
An efficient algorithm to find certain elements of
inverse of a sparse matrix

Farzad Mahfouzi

 In this note our aim is to find certain elements of the inverse of a symmetric sparse matrix.
When the size of the matrix is too large one might not be interested to know all elements of the
inverse of the matrix. In fact it's not efficient at all to find all elements of inverse of the matrix
and then filter out the required elements. Instead we can see in the following that for the case
of sparse matrices it's possible to find efficiently only required blocks of the inverse of matrix.
The idea is to reorder the indices of the matrix such that at the end we'll have a block
tridiagonal matrix(in general with different dimensions). Then we use a recursive method and
try to find the required blocks of the inverse which is in fact first block of the matrix.
Therefore in this method one should first specify the elements that are required. One can do
this by introducing a vector array x=[x1,x2,...,xn] , where xi shows the index of the required
elements. Therefore if the size of whole symmetric matrix A is N, xi would lie between 1 and
N. As the first step we construct an n by n matrix using these elements and put it as first block
of our block diagonal matrix B. Then we try to construct the whole block diagonal matrix B,
using this base. In order to do this we try to find the next block by finding the indices that are
connected directly to first block. For example if x=x1 =1 then , all js such that A(1,j) are
nonzero will give me the indices of my next block (i.e. x'=[j1,j2,...]). In order to do this in
Matlab we wrote following function

function x=neighbours_sites(ix,iy,m)
yp=find(ix==m);
for j=1:size(yp)
 x(j)=iy(yp(j));
end

where

[ix,iy,z]=find(A);

m in this function is index of one site and x would be in general an array showing all indices
coupled to index m. Now we can use this function and find indices of the next block using
following Matlab function;

function [x1,fs1,nfs1]=next_block(ix,iy,x,fs,nfs)
Nb=size(x,2);
fs1=fs;
nfs1=nfs;
Counter=0;
for j=1:Nb
 nx=neighbours_sites(ix,iy,x(j));
 for k=1:size(nx,2)
 new=1;
 for l=1:nfs1
 if(nx(k)==fs1(l))
 new=0;
 end
 end
 if(new==1)
 Counter=Counter+1;
 nfs1=nfs1+1;
 fs1(nfs1)=nx(k);
 x1(Counter)=nx(k);
 end
 end
end
if(Counter==0)
 x1=0;
end

 'fs' in this function represents found sites (indices) and 'nfs' is the number of found sites. We
have introduced such variables to put only new indices for the next block. As a result x1 in this
function gives indices of the next block. Now using this function we can also put as input the
indices of second block and get the indices of third block. Continuing this procedure we can
construct the whole matrix as blocked matrix. In fact in this method we find a new ordering for
our original matrix A which is now in a form of block diagonal matrix. As the following code
we present the function that performs this procedure.

function [T1,H,T2,s]=sparse_to_block(A,x)
[ix,iy,z]=find(A);
Nt=size(A,1);
fs=zeros(Nt);
Nb=size(x,2);
nfs=Nb;
fs(1:nfs)=x(:);
l_n=1;
s(l_n)=Nb;
while nfs<Nt
 nfs1=nfs;
 [x1,fs,nfs]=next_cell(ix,iy,x,fs,nfs);
 if(nfs1==nfs)
 break;
 end
 Nb1=size(x1,2);
 for j=1:Nb
 for k=1:Nb
 H(j,k,l_n)=A(x(j),x(k));
 end
 for k=1:Nb1
 T1(j,k,l_n)=A(x(j),x1(k));
 T2(k,j,l_n)=A(x1(k),x(j));
 end
 end
 l_n=l_n+1;
 x=x1;
 Nb=Nb1;
 s(l_n)=Nb;
end
for j=1:Nb
 for k=1:Nb
 H(j,k,l_n)=A(x(j),x(k));
 end
end

The outputs of this function are three arrays of matrices which form upper diagonal blocks
(T1) and diagonal blocks (H) and lower diagonal blocks (T2) and a one dimensional array s
which represents the dimensions of the block matrices. As an example we consider a 200 by
200 random sparse matrix shown in upper picture and put x=[1,2,3]. Then as output of the
above function we see a matrix with the structure shown in lower picture. Now we use this
three blocked diagonal matrix and using following function try to find the elements of inverse
of first block. We can see the result of direct inversion and our method in the following
picture taken from Matlab environment which are completely in agreement.

function invA=invb(T1,H,T2,s)
Nz=size(H,3);
N=size(H,1);
if(s==0)
 s(1:Nz)=N;
end
i=1:s(Nz);
B(i,i)=inv(H(i,i,Nz));
for k=1:Nz-2
 i=1:s(Nz-k);
 j=1:s(Nz-k+1);
 B(i,i)=inv(H(i,i,Nz-k)-T1(i,j,Nz-k)*B(j,j)*T2(j,i,Nz-k));
end
i=1:s(1);
j=1:s(2);
invA(i,i)=inv(H(i,i,1)-T1(i,j,1)*B(j,j)*T2(j,i,1));

