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Challenges for Computational Simulations

dThe performance challenge:

‘ producing high-performance computers ‘

dThe programming challenge:

‘ programming for complex computers ‘

dThe prediction challenge:

‘ developing truly predictive complex application codes ‘
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Progress in Information Technologies vs.

Progress in Scientific Computation
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Early Days of Computational Physics:

MRT and FPU Simulations

Metropolis, Rosenbluth, Teller (1953):

Monte Carlo simulation of hard disks
("Metropolis algorithm").

Fermi, Pasta, Ulam (1954): First computer experiment
2 3
1-D anharmonic chain: V :Z[(qnl ~G) +a(d,, —q) }

1 1

"Let us say here that the results of our computations
were, from the beginning, surprising us. Instead of a
continuous flow of energy from the first mode to the
higher modes, all of the problems show an entirely
different behavior. .. Instead of a gradual increase of
all the higher modes, the energy is exchanged,
essentially, among only a certain few. It is, therefore,
I very hard to observe the rate of "thermalization” or
0L 1 mixing in our pfoblem, and this was the initial purpose
ot | 2m of the calculation.”
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Computation in Cosmology
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Computation in Astrophysics

For a star 10 times heavier than the Sun,
about to explode as a type II supernova,
the collapse of the star's iron core creates a
hot fluid of nucleons. This model simulation
shows the instability and turbulent flow of
the hot nucleon fluid a fraction of a second
after core collapse. Colors show the fluid's
entropy: Red indicates the highest-entropy,
hottest fluid; cooler, lower-entropy fluid is
shown green. The outer surface of the
nucleon fluid is just inside the expanding
shock front that formed when the collapsing
core rebounded off the superdense proto-
neutron star (the small blue sphere). At the
instant shown, the front is stalled at a
radius of about 150 km. Reenergized by fluid
instability, neutrino flux, and other
mechanisms, the shock front will reach the
star's surface in a few hours, thus creating
the visible supernova. This image is based on
a three-dimensional simulation performed
at Oak Ridge National Laboratory's Center
for Computational Sciences.
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Computation in Geophysics

Simulated impact of the 10-
km- diameter asteroid that
struck the Yucatan peninsula
65 million years ago and
presumably triggered the
worldwide extinction of the
dinosaurs. Shown here 42
seconds aftfer impact, the
expanding column of debris
from the asteroid and
crater is about 100 km high.
Colors indicate femperature:
The hottest material (red) is
at about 6000 K, and the
coolest (blue) has returned
to ambient temperature. The
simulation uses the SAGE
code developed at Los
Alamos National Laboratory.
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Computation in Plasma Physics
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Computation in Atomic and Molecular Physics
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Computation in Condensed Matter Physics

"The general theory of quantum mechanics is now almost complete. The underlying
physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated
to be soluble." —P. A. M. Dirac (1929)
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Computation in High-Energy Physics

Lattice_,Ggﬁge Theory at Brookhaven

dn‘vfngﬁ&jor advances in our understanding of science...
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Computation vs. Lab Experiments vs. Theory

Computer Simulation Laboratory Experiment
model sample

program physical apparatus
testing of program calibration

computation measurement

data analysis data analysis
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Why do Computer Simulations?

dSimulations are the only general method for “solving”
many-body problems.

Experiment is limited and expensive. Simulations can
complement the experiment.

dSimulations can be easy even for complex systems.

U They scale up with the computer power.
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Two Routes in Computer Simulations of

Physical Processes

dNewton, Maxwell, Boltzmann and Schrodinger gave us the
model. All we must do is numerically solve the mathematical
problem and determine the properties — first principles or
ab initio methods.

Give us the phenomena and invent a model to mimic the
problem. The semi-empirical approach. But one cannot reliably
extrapolate the model away from the empirical data.
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Example: Molecular Dynamics

1. Pick particles, masses and potential.
2. Initialize positions and momentum. (boundary conditions in space and time)
3. Solve F =ma to determinel (1), V(t).
4. Compute properties along the trajectory.
5. Estimate errors.
6. Try fo use the simulation o answer physical questions.
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Know the Computational Complexity of Your

Problem Before You Put it on the Computer

U Computational Complexity: The branch of computer science which
classifies problems according to the computational resources required to

solve them.

CPU clock independent unit of time:
Time it takes to perform an elementary

dTime Complexi’ry: T(X) = H]aXt(X) operations such as adding two integer

IX|=n numbers.

T(N=6(g(n), cg(m=T(n)=c,g(n), vhzn,

T(n)=0O(n’) textbook
T(n)=0O(n*"") research

QExample: A B = «

QTractable versus Intractable: &(N*) vs. 2" or B(n!)

Example: Hubbard model on 16 x 16 with 220 electrons = dim(H) — 10150
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Computational Complexity References

LIMITS OF
COMPUTATION
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COMPUTATIONAL COMPLEXITY
FOR PHYSICISTS

The theory of computational complexity has some interesting links to physics, in particular
to quantum computing and statistical mechanics. This article contains an informal
introduction to this theory and its links to physics.

™ ompared w the
tionship betwees
matics, an exchange of
o ods berween physics and computer
science barely exists, However, the few interac-
tions that have gone beyond Fortran program-
ming and the quest for fster compurers have been
successful and have provided surprising insights in
both fields. This is partcutarly true for the mutual
exchange between statistical mechanics and the
theory of computational camplevity. He i
this exchange in a manner directed
with liethe or no knowledge of the theory.

The measure of complexity

The branch of theoretical computer
known as computational complexity is con-
cerned with classifying problems according to
the compurational resources required to solve
them (for additional information about this field,
see the “Related Works™ sidebar), What can be
measured (or computed) is the time that a par-
ticul i

Igorithm uses to solve the problem. This
wrn, depends on the algorithm’s imple-

1521-0615/027%17.00 © 2002 IEEE
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Chits-von-Cuericke University, Magdebury

as well as the computer on which the
Program is running.

The theory of computational complexity pro-
vides us with a notion of complexi is
largely independent of implementation detai
and the computer at hand. Its precise definition
requires a considerable formalism, however.
This is not surpri
highly nontrivial question that touches the foun-
dation of mathematics: Whar d s
sty it problem i solvable? Thinki
question leads to Gidel’s incompleteness theo-
rem, Turing machines, and the Church-Turing
thesis on computable functions,

Here we adopt a more informal, pragmartic
viewpoint. A problem is solvable if a computer
program written in your favorite programming
language can solve it. Your program’s running
time or time complexity must then be defined with
some care to serve as a meaningful measure of
the problem'’s complexity,

g because it is relaved to a

Time complexity

In general, running time depends on a prob-
wput data—the in-
Sorting 1,000 numbers takes longer than
sorting 10 numbers. Some sorting algorithms
run faster if the input data is parti
ready. To minimize the dependency
cific instance, we consider the worst-case time
complexity Tla):

lem’s size and on the specific

tanee,

sorted al-

n the spe-
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Code Verification Techniques

VERIFICATION: Does the code solves the chosen model correctly?

The few existing studies of error levels in scientific computer codes
indicate that the defect rate is about seven faults per 1000 lines of
FORTRAN code.

LdComparing code results to a related problem with an exact answer.

dEstablishing that the convergence rate of the truncation error with changing grid
spacing is consistent with expectations.

HdComparing calculated with expected results for a problem specially manufactured to
test the code.

HdMonitoring conserved quantities and parameters, preservation of symmetry properties,
and other easily predictable outcomes.

LBenchmarking—that is, comparing results with those from existing codes that can
calculate similar problems.
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Code Validation Techniques

VALIDATION: Does the model itself captures the essential
physical phenomena with adequate fidelity?

UPassive observations of physical events—for example, weather or supernovae.

QControlled experiments designed to investigate specific physics or engineering
principles—for example, nuclear reactions or spectroscopy.

LExperiments designed to certify the performance of a physical component or
system—for example, full-scale wind tunnels.

LExperiments specifically designed to validate code calculations—for example,
laser-fusion facilities.
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