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Quantum Mechanics

in the Words of the Founding Fathers

QAlbert Einstein: "Quantum mechanics is very impressive. But an inner voice tells me that it is
not yet the real thing. The theory produces a good deal but hardly brings us closer to the
secret of the Old One. I am at all events convinced that He does not play dice.”

CNiels Bohr: "Anyone who is not
shocked by quantum theory has not
understood a single word."

HdWerner Heisenberg: "I myself . ..
only came to believe in the
uncertainty relations after many
pangs of conscience. . ."

QErwin Schrédinger: "Had I known
that we were not going to get rid of
this damned quantum jumping, T
never would have involved myself in
this business!”

LdGroucho Marx: “Very interesting theory - it makes no sense at all.”
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Quantum Interference in Two-Slit Experiments

a constructive interference ¥} consiructive

Erasing Knowledge!

As Thomas Young taught us two
hundred years ago, photons interfere.

v=L (¥ 1)
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But now we know that:
Knowledge of path (1 or 2) is the reason
why interference is lost. It's as if the photon

destructive interference

+ - ________ slits
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= — knows it is being watched.
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Y R But now wediscover that:
erlnngres- gk Erasing the knowledge of photon path
- e re R brings interference back.
G s SRR ke
B Sty “No wonder Einstein was confused. j"ﬁ["
200 pholons - 5,000 photons r~ "ﬁj

L The self interference of individual particles is the greatest mistery in quntum
physics; in fact, Richard Feynman pronounced it "the only mystery” in quantum theory
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Quantum Erasure

micromaser
cavifies

photon
detectar

B. Green, Fabric of Cosmos (page 149): "These experiments are
a magnificent affront to our conventional notions of space and
time. Something that takes place long after and far away from
something else nevertheless is vital to our description of that
something else. By any classical-common sense-reckoning, that's,

N well, crazy. Of course, that's the point: classical reckoning is the
R wrong kind of reckoning to use in a quantum universe.... For a few
._,.“\ (et days after I learned of these experiments, I remember feeling
\ ““\;-\.;_h__ elated. I felt I'd been given a glimpse into a veiled side of reality.
afoms \ Common experience—mundane, ordinary, day-to-day activities—
-\,3\ suddenly seemed part of a classical charade, hiding the frue nature
NG of our quantum world. The world of the everyday suddenly seemed
NN ; nothing but an inverted magic act, lulling its audience into believing
\. s in the usual, familiar conceptions of space and time, while the
o astonishing truth of quantum reality lay carefully guarded by
nature's sleights of hand.”
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Classical vs. Three Roads to Quantum Mechanics
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Representation of Quantum Mechanics: Usual

Textbook Ones Cannot Be Put on the Computer

[ Coordinate Representation:

:Hx><x\\lf>dx=j\l’(x)\x>dx

L Momentum Representation:

)= 19} (p|)cp = | ) p|) (x| %) cpc
1 —ipx/H —Ipx/h
- Y(p)= PP (x)d
(p|x) \/%e = Y(p) \/%Ie (x)dx
Q Energy representation: A

H|E,)=E,|E,)

OEISINTIES WALS
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Quantum-Mechanical Probabilities in Practice

3 Probability to find coordinate of a particle in [X, X+ dX]

(W x)(x|¥)dx =¥ (x)¥(x)dx = T‘P*(x)‘P(x)dx =1

X[x)=x|x), ¥ O¥(X)= \\P(x)\2

d Probability to find momentum of a particle in [ P, P+ dp]
(¥]p)(p|¥)dp=""(p)¥(p)dp= [ ¥ (p)¥(p)dp =1

plp)=p|p), ¥ (P)¥(p)=|¥(p)

d Probability to find energy of a particle to be En
(P [ENE,|¥)=I(E,|¥) =" ¥, => D ¥ ¥, =1
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Schrédinger Equation(s)

3 time evolution of state vectors:

Vo

d]Y) . .
17 = H LI’> —> stationary: H \P> =E ‘\P>

dt

d time evolution of coordinate wave functions for a single particle
acted on by a conservative force with potential V (X)
. 0P (X n’
7 ) G ) 1V (09 (X)
ot 2m

0 Momentum representation for a single particle of mass m acted on
by a conservative force with potential V(x)=V(p) =ﬁjV(x)e‘ipX/hdx
T

: @\P(p)_p_z 0 A ' v
=2 ="—¥(p)+| V(p-p)¥(p)dp
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Heisenberg Uncertainty Relations

1 Operators (of course, Hermitian) which represent physical quantities in
QM in general do not commute:

(AB]=A-B-B-Az0=nhaB>_|([AB])

(8A) = <(A_<A>)2>: ()= (AY = aA=0iff A|¥)=a|¥)

Q Coordinate and momentum are c-numbers Xp— PX=0 in classical
hysics, but in QM: . A A
P < [X, 0, ]=in= AxApXZ%

> inequality does not involve simultaneous

measurements of x and p, but rather it

involves the measurement of one or the
other of these dynamical variables on each
independently prepared representative of

the particular state “P> being studied.

2 A p OThe experimental test of the Heisenberg
>

<€
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Quantum Tunneling Through

Single Barrier in Solid State Systems
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Figure 1.3: Simple approximation of the potential along the transport direction of a tunnel Figure 1.2: Schematic representation of a tunnel junction. The yellow balls represent atoms
junction, see Fig. 1.2. In the metal (left and right regions) the potential is constant, V{z) = V1. of a metal, the blue halls represent atoms of an insulator. The left and right regions stretch

[n the insulator the potential is also constant, V(z) = Vo, where Vo > V1. The incoming, macrescopically far into the left and right, respectively. The electron waves in the metal are
a R I R ikx —ika ike - . . . . .
reflected and transmitted waves are given hy Ae'™". Be and Fe'™. reflected or transmitted by the insulator in the muddle region
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Quantum Tunneling Through

Double Barrier in Textbooks

. h oW (X oY (X
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v * _ Jtransmitted,x>d . ‘ ‘
i T = Joommes o _ ) AT
i B Jincident,x<a | B|
o e | e 4 ‘ K ‘2 , for electrons incident from the right (-k states)
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S = (ESV)¥ () ., R
o8 .l fi o8 |
i o { “, on
A thx + Be thx ) X<a ’Dq l (l II | "'nq l
Ce™+De ™, a<x<b B WAY .|
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o | | )
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k = 2mE \/2m(v _E) % o F s 5 % = 4 ) B
N R i . o,

Transmission probability versus incident energy for:
K = \/2 m(E -V,) 0 = \/2 mV,-E) (a) asymmetric barriers; (b) symmetric barriers; (c)
" n? ’ h? tall barriers; and (d) narrow well.

PHYS 460/660: Computational Methods of Physics Computational Methods in Quantum Mechanics




Quantum Tunneling Through
Double Barrier in Solid State Systems

—-12 ——r—TT1
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Fig. 3. Transmission coefficient obtained numerically as a function of the
applied voltage in a double barrier heterostructure. The potential barrier
is 0.25 eV height, L=3d=150 A and the energy of the incident electron
is 50 meV.
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Plane Wave Solutions of the Free Particle

Schrodinger Equation

Plane waves are solution of the free particle Schrodinger equation in
coordinate representation:

.. O he 07
1h—Y (t) = — Y (x,t
ot » (1) 2m o0x° o (X,1)
] i p°
¥ (X)= ——(Et-px)|, E = —
0 ) eXp[ 't px)} 2m

Plane waves are eigenstates of the free particle Hamiltonian:
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Construction of Gaussian Wave Packet

From Plane Waves

: exp _—i(Et— px)_ E :p—2
(27h)" h o2m

Yo (X) =

[Linear superpositions of plane waves are also solutions!
P(X,0) =D W, ¥, (X,1) = P(x,t) = j f(P)P,(X—X,,t)dp

For Gaussian wave packet use Gaussian spectral function:

1 - (p-p,)’

cX
(27)" [, YT aer
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Spreading of Gaussian Wave Packet

for Particle at Rest

L The probability density that the particle is located at some location in space is
determined from the wave function (in coordinate representation):

P(X) =T (X)P(x) =(¥|x)(x| ¥)

QFor a free particle V(X)=0 the Schrédinger equation has the form of a diffusion
equation with diffusion coefficient 17/2m.

As time progresses the width of the

Cluarturn Mechanics R . . ; 1/2 .
distribution increases o (#t/m) . This

Wave packet spreading

r o N width is proportional fo the standard
oot | 1A ) oV f\ deviation of the position x. In quantum
osf | —— \IJ:_ ¥ % mechanics the standard deviation of the
o7 } i A\ o robability distribution of a variable is
os | 2m a /\ Fqualtime intervals Ef‘ren callZd the uncertainty in the
. o8 variable. If we have an object of mass 1 kg

then the time scale for the uncertainty in
the position of this object to increase by
about 10°°m is estimated fobe 3 -10°
years. Hence classical physics is amply
adequate to describe the dynamics of
macroscopic objects.

Q.25 0.35 0.495 .55

X
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Moving Gaussian Wave Packet

Y1) = [ FIPW,(x=X,t)dp = M (x,t)e*?

—0o0

. . 2
amplitude function : M (X,t) = 1 /14 exp{— (X=X, 2V0t) }
(27[) JOo 4o,
205’[
0-2 p arctan
phase: ¢(Xt)_h p0+ (x Xy —Vpb) [(X—=X%, — vt)+ Ov 2hm

. p L , W 4o t
group velocity:V, = —  localization in space:c;, = 2 1+ —
m o

Physical (i.e., measurable) properties are contained in:

PO =)W (X 1) =

exp{ (X_<X(t)>)2} (%)= T W (X, )XY (X,t) = X, +V,t

1
J2ro,(t) 20;
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Gaussian Wave Packet: Uncertainty Relations

Var(f))=<([5—<|5>)2>= j\lf(x,t)@%-poj ¥ (x, ik = o

AXAP = Jvar(ﬁ)\/var( p)=0,(t)o, 2 g

: eXp{ %) }Xp{ Py (X— Xo)}
(2%)1/4\/07X 40'X :

h h

AXAp =0, (t=0)o, = 5o 7p = 5<minimum uncertainty state

P

Y (x,0) =M (x,0)e’™*” =

t=0=-
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Time-Dependent Schrodinger Equation:

Direct Solution

HdThe time dependent Schrodinger equation can be compactly written a

2
ihgggzﬁqg H=-—V2+V(r)
ot 2m

where we assume Hamiltonian for a single particle in a potential V/(I).

OLets try to use naive Euler method to convert this into a difference equation:
LI]I’H—] . \Pn . IAt I_/I\ LPn
h

Where the superscript represent time and At is the time increment.

L The second derivative in the Hamiltonian is approximated by:

O°W"| Wi, —2¥i+Y¥y,
ox’ AX’

k

where AX is the interval in x, with similar expressions for the contributions from the y
and z coordinates.
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Stability Problem of Direct Euler Approach

O This finite difference equation is unstable:

hAt
2MAX>

O This is a linear second order difference equation in two variables. We can
solve it by Fourier analysis in the x direction. What this means is ‘rhath
dependence can be taken to be a superposition of solutions of form €

LPE:é/ eXp(IKkAX) n+l _ ~n | ¢ - . 1 n
x:kAx+aconstant}:>§ =" +iQ| exp(ixAX) -2+ exp(—ixAX) |

cM =L [1 —2iQ(1 —cos(/ch))}

Q Thus, af each time step (is multiplied by the amplification factor:

Wt =R +iQ( Wy, —2%, + ¥, ),Q =

a =1-2iQ[1-cos(xAX)| < |a|= \/1 +4Q%[1- ‘305(’<A)()]2

E|K‘:>‘Ol‘>1fOI'Q>0
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Implicit Method Cure?

O The instability of the Euler method is cured by time-reversal, i.e., we can use
the implicit method. For the free particle:

AAt
2MAX?

n+1 n = n+l1 n+l1 n+l1 .
Wi =W +IQ( Wi — 29 + W), Q =

so that "amplification" factor is now:
™

1+2iQ[ 1-cos (xAx) |

1

i \/1+4Q [1 cos( )]2

[ However, we now have new problem with unitarity: The implicit method does
not preserve unitarity, i.e., it does not keep the normalization integral

constant .
j P(x) P(x)dx =1

dThis is related to the fact that the amplification factor has magnitude less than or
equal o one.
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A Cure for both Stability and Unitarity

A The unitarity problem is cured by using a more accurate method — evaluate the time
derivative at the midpoint of the time interval by taking the average of the implicit and
explicit Euler methods approximations for the Hamiltonian.

Q For free particle such finite difference method yields the equation:

SRR +i%(\}’ﬂj—2\1’ﬂ“+\PE+})+i%(\PEH—2\PE +¥0))

o l—iQ[l—cos(KAX)]
- 1+iQ[1—cos(KAx)}

Q This is now finally a stable method that preserves unitarity; for a particle in 1 dimension
with potential V X), the finite difference TDSE is:

W —ig( W -2y ) iV P =W +ig (P, -2+ ) —iry

:‘a‘zl

Q  hAt At
Vk :V(Xk)a g TN T 0 r=—
2 am(Ax)? 2%
QO If considered as a set of linear equations for the unknowns ¥ Wo*' .. Wi" , we have

a tri-diagonal system of linear equations that can be solved much easier than standard
LU decomposition + forward-backward substitution. Note, however, that you need to use
complex arithmetic.
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Test Example for Computational Algorithm

Ensuring Unitary Evolution of Wave Packet

Tirme Dependent Schrodinger Equation
Propagation of a wave packet

10 ﬁ
08 r H
os | ﬂ

s s }%
- 8§

o7 | SN
& = . T

06 I

04 F
IRCH o

02 F

o1 F

oo F

oo 01 02 03 0.4 05 06 07 0.5 09 1.0

X

OThe figure shows the probability distribution at equal time intervals for a
Gaussian wave packet propagating to the right.
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Solving Time-Independent Schrodinger

Equation via Exact Diagonalization

[ Separation of variables to solve the partial differential equation:

2
" VR4V (DR [=in L9 _
T dt

¥ (r,t) = R(NT (t) = é{

2
T (1) = exp(—'%j, - th V’R +V (r)R = ER

O The spatial part has boundary conditions that often lead to an eigenvalue
problem, i.e., there is a solution forR only for a discrete set of values of E
This is formally similar to oscillations in a linear chain from Project 3.

O If we label the eigenvalues E,, E,,E,,... and the corresponding
eigenfunctions R, R,,R;,... then the complete solution is:

W(r,t) = Za R (r)exp( 'itj

‘P(t)>—exp(—lHtJ‘P(0)> zexp( 'Etj\|><u\xp<0)>

QOThe constants & |are determined from the initial conditions at T = ()
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