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Quantum Mechanics 
in the Words of the Founding Fathers

Albert Einstein: “Quantum mechanics is very impressive. But an inner voice tells me that it is 
not yet the real thing. The theory produces a good deal but hardly brings us closer to the 
secret of the Old One. I am at all events convinced that He does

 

not play dice.”

Niels

 

Bohr:

 

“Anyone who is not 
shocked by quantum theory has not 
understood a single word.”

Werner Heisenberg:

 

“I myself . . . 
only came to believe in the 
uncertainty relations after many 
pangs of conscience. . . “

Erwin Schrödinger: “Had I known 
that we were not going to get rid of 
this damned quantum jumping, I 
never would have involved myself in 
this business!”

Groucho

 

Marx:

 

”Very interesting theory -

 

it makes no sense at all.”
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Quantum Interference in Two-Slit Experiments

The self interference of individual particles

 

is the greatest mistery

 

in quntum

 
physics; in fact, Richard Feynman pronounced it “the only mystery”

 

in quantum theory
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Quantum Erasure
B. Green, Fabric of Cosmos (page 149):

 

“These experiments are 
a magnificent affront to our conventional notions of space and 
time. Something that takes place long after and far away from 
something else nevertheless is vital to our description of that 
something else. By any classical-common sense-reckoning, that's, 
well, crazy. Of course, that's the point: classical reckoning is

 

the 
wrong kind of reckoning to use in a quantum universe.... For a few 
days after I learned of these experiments, I remember feeling 
elated. I felt I'd been given a glimpse into a veiled side of reality. 
Common experience—mundane, ordinary, day-to-day activities—

 

suddenly seemed part of a classical charade, hiding the true nature 
of our quantum world. The world of the everyday suddenly seemed 
nothing but an inverted magic act, lulling its audience into believing 
in the usual, familiar conceptions of space and time, while the 
astonishing truth of quantum reality lay carefully guarded by 
nature's sleights of hand.”
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Classical vs. Three Roads to Quantum Mechanics
Ha

mi
lto

n-
La

gr
an

ge
M

ec
ha

nic
s

,i i
i i

p q
q p

  
  

 
H H

 
( , )

, 0 ( , )
t

H p qd ep q
dt Z

   


    


H

Dirac-Heisenberg-Schrödinger

Textbook Formulation in Hilbert Space

Moyal-Groenewald-Weyl

Deformation Quantization

Fe
yn

man
-D

ira
c

Pa
th

 In
te

gr
al

ˆ, A

ˆ

ˆ ˆA A ˆ ˆ[ , ]

i H
t

di A H
dt t



 
 




 






[ ]/
,( , ) ( ) iS q

f f i iK q t q t Dq t e   

( )/2

( , )
1 ( * )

q p p q

W

W
W W

i

q p

H H
t i
e


  

   


  




   





P Phase Orbit

P Feynman Paths

Boltzmann-Gibbs 

Statistical Mechanics



Computational Methods in Quantum MechanicsPHYS 460/660: Computational Methods of Physics

Representation of Quantum Mechanics: Usual 
Textbook Ones Cannot Be Put on the Computer


 

Coordinate Representation:



 

Momentum Representation:



 

Energy representation:
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Quantum-Mechanical Probabilities in Practice


 

Probability to find coordinate

 

of a particle in



 

Probability to find momentum

 

of a particle in



 

Probability to find energy of a particle to be        
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Schrödinger Equation(s)


 

time evolution of state vectors:



 

time evolution of coordinate wave functions for a single particle 
acted on by a conservative force with potential



 

Momentum representation for a single particle of mass m acted on 
by a conservative force with potential
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d

i H H E
dt


     

2
2( ) ( ) ( ) ( )

2
i V

t m


     


x x x x

( )V x

2( ) ( ) ( ') ( ') '
2

i p V d
t m






    

 
p p p p p p

/1( ) ( ) ( )
2

ipxV x V p V x e dx


   





Computational Methods in Quantum MechanicsPHYS 460/660: Computational Methods of Physics

Heisenberg Uncertainty Relations


 

Operators (of course, Hermitian) which represent physical quantities in 
QM in general do not commute:



 

Coordinate and momentum are c-numbers                         in classical 
physics, but in QM: 
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The experimental test of the Heisenberg 
inequality does not involve

 

simultaneous 
measurements of

 

x

 

and p, but rather it 
involves the measurement of one or the 
other of these dynamical variables on each 
independently prepared representative of 
the particular  state           being studied.
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Quantum Tunneling Through 
Single Barrier in Solid State Systems
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Quantum Tunneling Through 
Double Barrier in Textbooks
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Quantum Tunneling Through 
Double Barrier in Solid State Systems
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Plane Wave Solutions of the Free Particle 
Schrödinger Equation
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Plane waves are solution of the free particle

 

Schrödinger equation in 
coordinate representation:
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Plane waves are eigenstates

 

of the free particle

 

Hamiltonian:
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Construction of Gaussian Wave Packet 
From Plane Waves
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Linear superpositions
 

of plane waves are also solutions!

0( , ) ( , ) ( , ) ( ) ( , )n p p
n

x t w x t x t f p x x t dp




       
For Gaussian wave packet use Gaussian spectral function:

 

2
0

1 4 2

( )1( ) exp
42 pp

p pf p
 

 
  

  



Computational Methods in Quantum MechanicsPHYS 460/660: Computational Methods of Physics

Spreading of Gaussian Wave Packet 
for Particle at Rest

The probability density that the particle is located at some location in space is 
determined from the wave function (in coordinate representation):

*( ) ( ) ( )     x x x x x

For a free particle              the Schrödinger equation has the form of a diffusion 
equation with diffusion coefficient

 

.
( ) 0V x

/2i m
As time progresses the width of the 
distribution increases                  .

 

This 
width is proportional to the standard 
deviation of the position x. In quantum 
mechanics the standard deviation of the 
probability distribution of a variable is 
often called the uncertainty in the 
variable. If we have an object of mass 1 kg 
then the time scale for the uncertainty in 
the position of this object to increase by 
about              is estimated to be             
years. Hence classical physics is amply 
adequate to describe the dynamics of 
macroscopic objects. 
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Moving Gaussian Wave Packet
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Physical (i.e., measurable)

 

properties are contained in: 
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Gaussian Wave Packet: Uncertainty Relations
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Time-Dependent
 

Schrödinger Equation: 
Direct Solution

2
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The time dependent Schröödinger equation can be compactly written a

where we assume Hamiltonian for a single particle in a potential

 

.

Lets try to use naïve Euler method

 

to convert this into a difference equation:

Where the superscript represent time and           is the time increment.

The second derivative

 

in the Hamiltonian is approximated by:

where       is the interval in x, with similar expressions for the contributions from the y

 
and z coordinates.  
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Stability Problem of Direct Euler Approach


 

This finite difference equation is unstable:



 

This is a linear second order difference equation

 

in two variables. We can 
solve it by Fourier analysis in the x direction. What this means is that x-

 
dependence can be taken to be a superposition of solutions of form       :



 

Thus, at each time step      is multiplied by the amplification factor:
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Implicit Method Cure?


 

The instability of the Euler method is cured by time-reversal, i.e., we can use 
the implicit method. For the free particle:

so that “amplification”

 

factor is now:



 

However, we now have new problem with unitarity:

 

The implicit method does 
not preserve unitarity, i.e., it does not keep the normalization integral             
constant 
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This is related to the fact that the amplification factor has magnitude less than or 
equal to one.
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A Cure
 

for both Stability and Unitarity


 

The unitarity

 

problem is cured by using a more accurate method

 

— evaluate the time 
derivative at the midpoint of the time interval by taking the average of the implicit and 
explicit Euler methods approximations for the Hamiltonian. 



 

For free particle such finite difference method yields the equation:



 

This is now finally a stable method that preserves unitarity;

 

for a particle in 1 dimension 
with potential         , the finite difference TDSE is:



 

If considered as a set of linear equations for the unknowns     , we have 
a tri-diagonal system

 

of linear equations

 

that can be solved much easier than standard 
LU decomposition + forward-backward substitution. Note, however, that you need to use 
complex arithmetic. 
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Test Example for Computational Algorithm 
Ensuring Unitary Evolution of Wave Packet

The figure shows the probability distribution at equal time intervals for a 
Gaussian wave packet propagating to the right. 
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Solving  Time-Independent Schrödinger 
Equation via Exact Diagonalization



 

Separation of variables to solve the partial differential equation:



 

The spatial part has boundary conditions that often lead to an eigenvalue

 
problem, i.e., there is a solution for     only for a discrete set of values of  
This is formally similar to oscillations in a linear chain from Project 3. 



 

If we label the eigenvalues

 

and the corresponding 
eigenfunctions

 

then the complete solution is:
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l 0t The constants      are determined from the initial conditions at
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