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We report on the numerical study of conservative chaotic motion in a classical scattering example
in which the state of two point particles with independent masses are calculated in a closed system.
It is found that for certain initial conditions the resulting elastic collisions with each other and the
ground can lead to chaos. To show the chaotic nature of the system Poincaré cross sections are taken
at the moment of collision between the two masses. Combined with basic plots for the positions of
the particles it is seen that different values of the masses produce different ”degrees” of chaos. In
addition, the autocorrelation function is employed, showing the diminishing similarity present for
chaotic systems. All calculations are done by exactly solving for the moments of collision and then
filling in numerically calculated values for the positions.

PACS numbers: 5.45.-a, 95.10.Fh

I. INTRODUCTION

In the late 19th century Henri Poincaré’s work on the
infamous 3-body problem gave birth to modern chaos
theory, and since then numerous chaotic systems have
been discovered. In order to evaluate these systems we
must understand how to analyze chaos, and what we can
learn from it. Chaos, not to be confused with random, de-
scribes a system in which a very small perturbation in the
initial conditions can lead to large changes in the system
in a short period of evolution. Since initial conditions can
only be measured with a finite accuracy this implies that
the system will be almost totally unpredictable within a
short period of time. In order for chaos to arise there
are two conditions: the system must be nonlinear, and
must have 3 or more degrees of freedom as defined by
dynamical system theory.

In our study of chaos we simulate a simple scatter-
ing scenario between two point masses. The system is
composed of two masses released with with some initial
conditions specified by x10, x20, v10, v20 which are then al-
lowed to free fall under the influence of gravity. The only
constraint on the system is a ”floor” placed at x = 0
which allows for repeated collisions between the two par-
ticles. In between collisions the particles are governed
by the simple solution to Newton’s 2nd Law, F = ma,
for a constant force f . Given that f = −g we have the
following equation of motion for particle n,

Xn(t) = −g

2
t2 + vn0t + xn0. (1)

All collisions are considered to be elastic, making the
system conservative, and are governed by the equations
for conservation of kinetic energy (for elastic collisions)
and conservation of momentum, Eqs. (2) and (3) respec-
tively:
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m1v1 + m2v2 = m1u1 + m2u2, (3)

where vn is the velocity of the particle before the colli-
sion, and un is the velocity afterwards. Simple algebraic
manipulation of Eqs. (2) and (3) gives the following ex-
pressions for u1 and u2 after the two masses collide,

u1 =
v1(m1 −m2) + 2m2v2

m1 + m2
, (4)

u2 =
v2(m2 −m1) + 2m1v1

m1 + m2
. (5)

In the case of a collision with the floor we simply re-
verse the direction of the velocity, leaving its magnitude
unchanged.

In order for this system to be chaotic it must meet
the two criteria listed earlier, nonlinearity and a certain
degree of freedom. The nonlinearity in this system is
not particularly obvious from the equations given, but
we must consider the fact that the entire state of the
system is not given by Eq. (1), but rather by a piece-
wise continuous combination of them. In other words, the
collisions create impulses in the velocity of the particles
which could be modeled by nonlinear steps in v(t). After
each of these impulses the system again obeys Eq. (1)
but with a different x0 and v0, and with time ”starting”
back at zero. The other requirement for chaos is at least
3 degrees of freedom as per dynamical system theory,
in our case we have 4 dimensional freedom given by the
equations for X1(t), X2(t), V1(t), and V2(t). Dynamical
system theory requires first order differential equations,
and we have:

dX1

dt
= V1, (6)

dX2

dt
= V2 (7)

dV1

dt
= −g, (8)

dV2

dt
= −g. (9)

Given that these requirements are met our system is
capable of chaos. This does not mean it is always chaotic,
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FIG. 1: Trajectories of mass m2 for (a)m2/m1 = 1 ,
(b)m2/m1 = 2, and (c)m2/m1 = 9.
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FIG. 2: Poincaré cross-section for m2/m1 = 1.

as we shall see, but that given the proper conditions chaos
can arise. It is also important to note that because this
system is conservative the chaos our system exhibits will
be different than that of a dissipative system. These two
types of chaos are simply called conservative and dissi-
pative chaos respectively. After describing the method
we use to evaluate the system we will begin discussion
and analysis of the most fundamental tool in chaos the-
ory, the Poincaré cross section. We will also examine the
aperiodic structure of chaos via an implementation of the
Autocorrelation function in order to visualize the signal’s
self-similarity.

II. METHOD

The computational implementation of the system is
fairly simple. The next moments of collision for the parti-
cles, both with each other and the floor, are computed ex-
actly for the given state. From these collisions we choose
the closest collision, i.e. the one that will happen first.
After obtaining the point at which the current iteration
of Eq. (1) becomes invalid we then compute all values
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FIG. 3: Poincaré cross-section for m2/m1 = 2.

of X1, X2, V1, and V2 up until that point in a specified
discrete time step. After this is complete the next state
of the system is then calculated via Eqs. (4) and (5) for
mass-mass collisions, or the simple reversal of velocity
mentioned in Sec. I if the collision is with the floor. The
entire state of the system is also stored if the collision is
between the two masses since this data is needed for the
Poincaré cross-sections mentioned in Sec. I.

The moments of collision are calculated by both simul-
taneously solving Eq. (1) for the particles to find their
moment of collision, and by setting each equal to zero
to solve for the floor impact time. The solutions of the
quadratic equation are done in such a way as to avoid
dangerous computational errors and with special cases
for x0 = 0 and v0 = 0. For all data presented the system
was evolved for t = 100 s with a discrete time step of
∆t = 10−4 s.

III. CHAOS

We now begin our analysis of the system by evolv-
ing for several different sets of initial conditions. For
all simulations (except one) the the initial conditions of
x10 = 1, x20 = 3, v10 = 0, v20 = 0 are shared, we will
simply vary the mass ratio m2/m1 to study the system.
Specifically we will take m2/m1 to be 1,2, and 9 in our
three different simulations.

We start by plotting the trajectory of the second, heav-
ier, particle versus time which can be seen for all three
masses in Fig. 1. Here we see a structure being very
close to periodic for m2/m1 = 1 and m2/m1 = 9. For
m2/m1 = 2, on the other hand, the system seems very
aperiodic. These initial plots would lead us to believe
that m2/m1 = 2 may be exhibiting ”chaotic behavior”,
and possibly m2/m1 = 9 as well, looking at the varia-
tions at the maximum of each crest. Overall, the system
is obviously chaotic from these plots, a slight increase
in the mass changed the system from almost periodic
to completely aperiodic, and then back again. What is
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FIG. 4: Poincaré cross-section for m2/m1 = 9.

−0.8

0

0.8

−0.8  

0

0.8

A
(τ

)

0 20 40 60 80 100

−0.8

0

0.8

Time (τ)

(a)

(b)

(c)

FIG. 5: Autocorrelation function of mass m2 for (a)m2/m1 =
1 , (b)m2/m1 = 2, and (c)m2/m1 = 9.

meant by chaotic behavior is that the particular evolu-
tion of the system is displaying what at first sight looks
like unpredictability, the peaks appear to be random.

We now seek to prove that the system is chaotic, and
not random. In order to do this we have computed the
Poincaré cross-section of our system at the moment of
collision for X2. These sections can be seen in Figs. 2,
3, and 4. These so-called Poincaré cross-sections give
us a glimpse into the world of chaos, they represent a
slice through the phase space of the system, which for
conservative chaos, is a ”fat” fractal structure. Here we
clearly see that our system is not random, the apparent
order in the phase space would not be there for a random
system.

This ”fat” fractal structure can be seen more clearly in
Figs. 6 and 7 which show the Poincaré section for many
different initial conditions for the mass ratio m2/m1 = 9.
Here we can see that these structures, are very ordered,
not just repeating loops but very intricate patterns that
comprise the fractal structure

These the figures (Figs. 2, 3, and 4) show that al-
though there are many combinations of x and v, not
all are valid, there are regions seen in the phase space
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FIG. 6: Poincaré cross-section for m2/m1 = 9 for multiple
initial conditions.
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FIG. 7: Enlarged view of Fig. 6.

that the chaotic system does not allow. These ”regu-
lar islands” are regions of stability for the system, these
points are not part of the chaotic region. That is to say,
for the given initial conditions the system will never take
on values in that region. The only way for the parti-
cles to evolve inside these ”islands” are for regular, not
chaotic, motion. The regions seen in these plots exagger-
ate the regular islands because we are only computing a
small part of the fractal structure, the chaotic band may
extend into this space for a different set of initial veloci-
ties or positions. However, for the computed conditions,
these islands do depict areas the system will never oc-
cupy.

Specifically we see in Figs. 3 and 4 that the phase space
is very densely packed with points, where as Fig. 2 is
much simpler looking. This further proves our conjecture
that m2/m1 = 2 and m2/m1 = 9 were chaotic. The ratio
m2/m1 = 1 (Fig. 2), on the other hand, seems to show
some form of period doubling, a sign of the onset of chaos.
In this state there only a few values of v for each value
of x, instead of the many seen in the other two cases. As
stated earlier, stating that a system is chaotic does not
mean it always exhibits chaotic behavior, simply that it
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is capable of it.

IV. AUTOCORRELATION FUNCTION

As we stated in Sec. I chaotic systems are very aperi-
odic and the signal should not show any significant sim-
ilarity with itself as time progresses. In order to quan-
titatively evaluate this for our system we employed the
Autocorrelation function, which for continuous signals is
given by the integral,

C(τ) =
∫ ∞

0

(x(t)− x̄)(x(t + τ)− x̄)dt. (10)

Converting this to a discrete, programmable form, we
have,

A[r] =
N−r∆t∑

i=1

(x[i]− x̄)(x[i + r∆t]− x̄), (11)

where N is the number of elements in the data set and
∆t is the rate at which we are ”sampling” the data to be
compared, r∆t is the τ from Eq. (10).

The results of evaluating this discrete sum for our dif-
ferent mass ratios is shown in Fig. 5. It is slightly difficult

to see differences among the plots, but the correlation
for m2/m1 = 2 in Fig. 5b is clearly smaller than that
for m2/m1 = 1 and m2/m1 = 9 (Figs. 5a and 5c re-
spectively). We also see that m2/m1 = 1 seems to be
the most correlated, or most periodic, which agrees with
our Poincaré cross-sections. Also, when inspecting Fig.
1b we see that m2/m1 = 1 appears to be the system
most closely resembling a periodic structure. These re-
sults show that chaotic systems are aperiodic and have
very little self-similarity, they are very unpredictable as
time goes on, as seen by the slight decay in Fig. 5b.

V. CONCLUSIONS

By analyzing a simple chaotic system we are able to un-
derstand how chaotic systems evolve. We see that there
is almost no predictability after a certain period of time
for the system and that the systems are very aperiodic.
Despite their apparent randomness in the spatial domain,
there exists a very structured order in the phase space of
these systems. Specifically their phase spaces take the
form of fat fractals, displaying highly ordered, repetitive,
structures. By analyzing these phase space diagrams we
can better understand how the system may or may not
evolve, and what properties it might have.
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