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Can few simple laws of Cellular Automata
produce rich behavior of complex systems? 

 Cellular Automata: invented by von Neumann and Ulam in 1948 as an idealization of 
biological self-reproduction → this is why lattice site are called cells.

 More recently CAM have been applied to systems ranging from fluids to galaxies.

 CAM are example of a discrete dynamical system that can be simulated exactly on 
the computer.

 Discrete space, time, and physical quantities with integer values that are updated 
according to the local rules:

1. Space is discrete and there is a regular array of sites (cells). Each site has 
a finite set of values.

2. Time is discrete, and the value of each site is updated in a sequence of 
discrete time steps.

3. The rule for the new value of a site depends only on the values of a local 
neighborhood of sites near it.

4. The variables at each site are updated simultaneously (“synchronously”) 
based on the values of the variables at the previous time step.

 CAM vs. discretized PDE: No accumulation of round-off errors.
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Perhaps The Most Famous CAM: 
Game of Life 

 Invented by J. Conway in 1970 to produce fascinating patterns via few simple rules:

 Life is full of surprises → In most cases, it is impossible to look at a starting position and 
see what will happen in the future. The only way to find out is to follow the rules of the 
game. 

 Life is one of the simplest examples of what is sometimes called "emergent complexity" or 
"self-organizing systems.“ It is the study of how elaborate patterns and behaviors can 
emerge from very simple rules. 
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Are There Universal Signatures 
of Complex Behavior? 

 Punctuated Equilibrium: There are long periods of relative stasis 
punctuated by crises (“avalanched”) of various sizes.

 Power Laws: The relationship between the sizes of these avalanches 
can be expressed in a simple exponential equation. There are no 
singular explanations for large events: the same forces that made 
the Dow Jones average drop five points yesterday also caused the 
crash of 1987.

 Fractal Geometry: Where a system exists in space, it is self-similar 
on all scales. 

 1/f Noise: When a system evolves over a time, the record of 
evolution is also fractal.

 Self-Organized Criticality: explain all this phenomenological 
features by finding simple dynamics that spontaneously drives 
system into a critical state characterized by power laws.
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Fluctuations of Physical Quantities: 
Noise and Its Power Spectrum 
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Power Laws and Scale Invariance
 Main Idea: In many complex systems large events are part of a distribution of 

events and do not depend on special conditions or external forces.

 If s represents the magnitude of an event, such as the energy released in an 
earthquake or the amount of snow in an avalanche, then a system is said to be 
critical if the number of events follows power law (for               there is one 
large event of size 1000 for every 1000 events of size 1). 

( )N s s α−


Power laws are scale invariant:

Combining large number of independently acting random events gives Gaussian – no 
scale invariance and practically no large events: 
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Sandpile (Bak-Tang-Weisenfeld) 
Cellular Automaton

 A model of dissipative dynamical system with local interacting degrees of freedom and 
many metastable states

 It self-organizes - without fine tuning of parameters, like temperature in the case of 
thermal critical phenomena, and independently of the initial conditions - into a critical 
state (scale-invariance) that is attractor of the dynamics and robust with respect to 
variations of parameters and the presence of quenched randomness.

 Constant average height in the critical state → the probability that activity will die is on 
the average balanced by the probability that activity will branch out.
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Avalanches in the SOC state of Sandpile CAM 
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Power Laws (“Scaling”) in 
the SOC  state of Sandpile CAM 
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Size of Clusters vs. Time 
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How to Relax Sandpile to SOC state

%program soc_relax.m

%PARAMETERS

N=128; %lattice size

%VARIABLES

flag=0; % logical variable

z(2:N+1,2:N+1)=randi([5,10],N,N);

time=1;
while 1 % infinite loop

flag=0;
z(1,:)=0; z(:,1)=0;
z(N+2,:)=0; z(:,N+2)=0;

for i=2:N+1
for j=2:N+1

if (z(i,j)>3)
z(i,j)=z(i,j)-4;    
z(i+1,j)=z(i+1,j)+1;    
z(i-1,j)=z(i-1,j)+1;
z(i,j+1)=z(i,j+1)+1;
z(i,j-1)=z(i,j-1)+1;
flag=1;

end
end

end
if (flag==0)

break
end

zaverage(time)=sum(sum(z(2:N+1,2:N+
1)))/(N*N);
time=time+1;
end % infinite loop
t=1:time-1;
plot(t,zaverage);
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Neural Network vs. Human Brain 
 Neural Net is an artificial representation of the human brain that tries to simulate its 

learning process. 

 The term “artificial” means that neural nets are implemented in computer programs that 
are able to handle large number of necessary calculations during the learning process. 

 Human brain consists of a large number (more than a billion) of neural cells that process 
information. Each cell works like a simple processor and only the massive interaction 
between all cells and their parallel processing makes the brain's abilities possible:

Neuron consists of a core, dendrites for incoming information 
and an axon with dendrites for outgoing information that is 
passed to connected neurons. Information is transported 
between neurons in form of electrical stimulations along the 
dendrites.  Incoming information that reaches dendrites is 
added up and then delivered along axon to the dendrites at its 
end, where the information is passed to other neurons if the 
stimulation has exceeded a certain threshold. In this case, the 
neuron is said to be activated. If the incoming stimulation had 
been too low, the information will not be transported any 
further. In this case, the neuron is said to be inhibited.  The 
connections between the neurons are adaptive, what means 
that the connection structure is changing dynamically. It is 
commonly acknowledged that the learning ability of the human 
brain is based on this adaptation. 
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Building Blocks of Neural Nets 
Structure of a neuron of a Neural Net: Three neuron layer Neural Net:

Neural nets are being constructed to solve 
problems that cannot be solved using conventional 
algorithms, such as optimization and classification 
problems: 

→ pattern association 
→ pattern classification 
→ regularity detection 
→ image processing 
→ speech analysis 
→ optimization problems 
→ robot steering 
→ processing of inaccurate or incomplete inputs 
→ quality assurance 
→ stock market forecasting  …
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Hopfield Model of Neural Networks

The Hopfield model consists of a single 
layer of processing elements where each unit 
is connected to every other unit in the 
network other than itself.

The connection weight matrix W of this 
type of network is square and symmetric, i.e., 
Wij = Wji for i, j = 1, 2, ..., m. Each unit has an 
extra external input Ii. This extra input leads 
to a modification in the computation of the 
net input to the units: 
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After many updates discrete Hopfield Neural Net 
converges toward a local minimum of the energy 

function that corresponds to stored pattern → The 
stored pattern to which the network converges depends 
on the input pattern and the connection weight matrix.
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Hopfield Neural Net: Memory and Learning
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Content Addressable Memory has to be able to: Store, Recall, and Display Patterns

To store m patterns into the memory 
chose couplings according to:

If the number of stored patterns exceeds   
the energy landscapes changed dramatically 

(stored patterns become unstable and system 
ceases to function as a memory) → like phase 

transition in spin glasses

A new pattern p can be learned by adding a small contribution to interactions:
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where            is the new pattern,         is parameter that controls how fast the learning 
should occur, and the value of      can be adjusted to allow for the fading of old memories.
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Basins of attraction 
of stored patterns.
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