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Terminology for ODEs

—y(b),...,
dt dt” y(® dt"

LdOrdinary: only one independent variable

- (y,d y(t), 2 d y(t)j ~0

dDifferential: unknown functions enter into the
equation through its derivatives

LOrder: highest derivative in F

Degree: exponent of the highest derivative

2

Example:(% y(t)j —-y({)=0
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What Does It Mean to Solve ODE?

y=y(t)

A problem involving ODE is not completely specified by
its equation

ODE has to be supplemented with boundary conditions:
‘Initial value problem: is given at some starting value ti ,

and it is desired to find Y at some final points tf or at some
discrete list of points (for example, at tabulated intervals).

‘Two point bondary value problem: Boundary conditions are
specified at more than one T typically some of the conditions
will be specified at tiand some at tf.
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What Does it Mean to Numerically Solve ODE

with the Initial Value Conditions?

d)(;it) =1 (t, Y(t))§ y(t,) =Y,

A numerical solution to this problem generates sequence of values for

the independent variable
tl,tz,o ° o’tn

and a corresponding sequence of values of the dependent variable

Yis Y2505 Yy

so that each '}/ approximates solution at T -

yit)=y.,, n=0,1,...
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Euler Method Fundamentals

Al finite difference methods start from the same conceptual idea: Add small
increments to your function corresponding to derivatives (right-hand side of the
equations) multiplied by the stepsize.

HEuler method is an implementation of this idea in the simplest and most direct
form.

DEFICIENCES OF EULER METHOD

9 yEuler

dTiny steps are needed to get even
Yirue a few digits accuracy.
OThe biggest defect of Euler
method is actually inability to
provide an error estimate.
L Thus, there is no automatic way to
determine what step size is needed
to achieve a specified accuracy.

t
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Euler Algorithm for First-Order ODE

Converted Into MATLARB Code
dy

—=1(,y) > Ay = T (1, y)At
dt

Y%oMATLAB code

t=1,;

Y=Y

while t <= tfinal
y=y+h*feval(f,t,y)
t=t+h

end
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Step Size Effects in Radioactive Decay

N N =
N, == N, =N,(t=0)e -
dt T

Analytics:

Numerics (Euler):

100 '

dN N [ A=0.05

Ny (At) = Ny (0)+—2At+O( (A1) 5 4] A=0.2

dt S AE=0.5

At=0.7

Ni+1 ~ i _&At “'Za he Exact: 100%*¢™

T E 40k
Numerical solution will depend ; |
| on The step size | |

O o 1 = :" .2 - & AT
Et 0 1 5 3 4 5
Time t (s)
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Stability of Euler Algorithm

dStep size if often limited by the stability criterion:
Yo ay=yo)=ly=e*

After n Euler steps of size At:
V... =Y, —ay At =y = (1—aAt)"

Approximate solution will decay monotonically only if At is small enough:

At <At = 1
a

QFor a single decaying exponential-like solution (i.e. if There is only one
first order equation) the existence of a stability criterion is not a

problem because T has to be small for the reasons of accuracy.
Numerical methods for ODE
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Accuracy:

Discretization and Roundoff Errors

Le
Integrate over interval: L — t —t —> Full Error: Ch +—
EILoca : C Vo
dU Number of steps for roundoff error to be comparable with the discretization error: N ~ L(Lj
T f (un? n) & ¢
dt — LEn — yn+1 _un+1 (tn+1)
un (tn) — yn ) N
ty —
QGlobal: f=f®O=yt)=]"f)dr~Y hf(t,)
0 n=0
GE =y —y(t) LE, =h, f(t)~["" f()dz
OdMethod is of order n iff: GE, —Zh f(t)— j f(r)dz
LE, =O(h™) < [LE, [<Ch™] | cpecal cose
_ . GEn _ LEn er;or is trivially
h=t,, -t =At 2t T
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Global Discretization Error by Example

QSuppose we want to find the solution over the interval [0,T]

— we first divide the interval into n equal steps At = T/n

oThis is a measure of the

i TY global truncation error,
y(T)=e "\ Yo = (l_aﬁj i.e., the error over a fixed
range in f.
_ (@T)’ (@Ty alt is proportional to the
y(r)=1-at+ 2 3 T first power of the step
size, and hence the Euler
[ l_aTMO-D @D’ NO-DO-D) @TY | iihod isa first order
" n’ 2! n’ 3! method - do not confuse
2 2 this with the fact that
y(T)-y, :l@_g(éﬂ') _|_m_|_o(i2j ~a_AtaTe-aT we are applying it to the
n 2! n 3! n 2 case to a first order
equation
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Reducing Higher Order ODE to a

System of First Order ODE

LSolve higher order ODEs by splitting them into sets of first
order equations:

d’y dy
-2+ g(t)y = g(t
dt2+p()dt+OI()y g(t)
(dz
— =gt - pt)z—q)y
_dy dt
7 =— =
dt dy
_:Z
_ dt

There 1s no unique way to do this:

| 92 _ o+ (dp() (t)jy
_ay dt dt
—d{=z—p<t)y
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Example: Realistic Motion of Baseball

mdzr—mg’ Bv2v+S\7><a3
V — aofF : I:drag dt2 2 vV 0
v > < Xi+1 — Xi + ViXAt
0 B
< : Viag = Vi ——= VWAt
V + cof m
initialize t, V(t,) Yia = Y; +V/ At
do while i <n PN Vi, =V — gAt
yi+1 — yi + f(tia yl)At Zi+1 — Zi +ViZAt
t . =t +At S.v
i+1 | Viz+1 :Viz 9 XC() At
end do m
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More Realistic Modeling Beyond Laminar
Air Flow: Turbulence Effects

) Direction of spin
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ODE for Linear Harmonic Oscillator

2
d (29 | gsin¢9=0
dt I

for small 0 = siné =~ @

2
c ;9 | gH:O, Q:\/g
dt | I

2
E = 1 ml* (d_é’j + % mgl&”° must be conserved!
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Euler Method for Linear Harmonic Oscillator

L Switch to dimensionless quantities:

240 T
Length=Im
d 29 . 15 ' Timi step At=0.04s
—+0=0=0=0,sin(Qt+¢) _ |
dt = |
) &0 1.0F
1 1 g i Euler
Etotal — — d_e _|__92 = 05F Euler-Cromer | _
2\ dt 2 -
0.0 .
0 2 -+ 6 8
Time t(s)

dEuler discretization scheme:
o . =o —0 At (E 1 (a)2
0. =6 +o At} = -
ta =t, +At | | Bow = E; (1+At2)
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Euler Method Fails for Q(t)

Euler
Euler-Cromer

Length=1m
Time step At=0.04s

0 2 4 6 8 10
Time t(s)
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Euler Method Fails for a)(t)

Length=1m
Time step At=0.04s

Euler
Euler-Cromer

0 2 4 6 3 10
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Euler Fails for Phase Space Trajectory

Length=1m ——Euler
Time step At=0.04s —_—

-2 -1

0
o(t)
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Can We Save Euler Method by
Using Smaller Step Size?

Length=1m

Euler
Euler-Cromer

Time step At=0.04s
Time step At=0.01s

Time t(s)
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Cromer Fix for Euler Method Applied to LHO

(

@, , =, —0 Al

W >0 ., =6, =0 +w At

n+1 n+1
t

U =1 +At

O Apparently trivial trick, but:

E =E +%(a)n2 -6, ) A +O( AL’

0=0,sm(t-1)), o=0,cos(t-t)

<a)2 —0%=6," cos2(t—t, )> =0

over a period
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From Euler to Higher Order Algorithms

y(x) @ -

X X3 X3 X

Figure 16.1.1.  Euler's method. In thus simplest (and least accurate) method for mtegrating an ODE,

the derivative at the starting pomt of each mnterval 15 extrapolated fo find the next fimction value. The
method has first-order accuracy.

— |
Yo =Y, T f (tn , yn) Mean value theorem

VS. exact

t =t + h y(t+At) = y(t)+dy/dt]| At

I
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Midpoint Method: Second Order Runge-Kutta

Sl — f(tn? yn)

h h
@ ,ﬁ@_‘“. 82: f(tn+_9yn+_sl)

Q=" & ) 2 2

. J/
Vv

()

Figure 16.1.2.  Midpomt method. Second-order accuracy 1s obtawed by using the wunal denvative at
each 3 step to find 2 pomnt halfway across the mterval, then using the mdl,c'm derivative across the full
width of the interval. In the figure, filled dots represent final fimction values, while open dots represent
finction values that are discarded once their dervatives have been calculated and used.

yn+1 — yn T hSz +O(h3)
1:n+1 — 1:n h
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Classic Runge-Kutta Method

A s, =f(t,y)

“ /a
L, h  h
\\H ..‘H_H N Oh ' 2 ( n 2 y 2 1 )

h h
S3 = f(tn +§9 Yn +§S2)

o _ s, =f(, +h,y +hs,)
Figure 16.1.3.  Fowth-order Famge-Entta method. In each step the denvative 15 evaluated four times: ,
once at the mifial pom:, twice at mal midpomss, and once at a tnal endpoint. From these dervatrves the g

final fimction value (shown as a filled dot) is calculated. (See text for detals.)

yn+1 — yn +2(Sl +282 +283 + S4)+O(h5)

t ., =t +h

PHYS 460/660: Computational Methods of Physics Numerical methods for ODE



Classic Runge-Kutta:

Fortran Program vs. Matlab Script

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)

INTEGER n,NHAX

REAL h,x,dydx(n) ,y(n),yout(n)

EXTERNAL derivs

PARAMETER (NMAX=50) Set to the maximum number of functions.
Given values for the variables y(1:n) and their derivatives dydx(1:n) known at x, use
the fourth-order Runge-Kurtta method to advance the solution over an interval h and return
the incremented variables as yout(1:n), which need not be a distinct array from y. The
user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx art x.

INTEGER i

REAL h6,hh,xh, dym(NMAX) , dyt (NHAX) ,yt (NMAX) MATLAB
hh=h+0.5 clc: % Clears the screen
hﬁ‘hfﬁ clear all:;
xh=x+hh _
do 1 i=1,n First seep. |, _ ... .. T
:Ftl:1:|=:|"{l}+hh*d:r"j1|:l} ¥y = zer ;l'_ length (x) ) - )
enddo 11 ¥ii) = 2 ¥ initial ondition
call derivs (ﬂ:l..:.-‘t.d.:.-‘t:l Seacond step| F_=v = B(t,r) 3.%exp(-t)-0.4%r;: %+ change the function as vou desire
doz i=1.n o . )
¥t (i)=y(i)+hh*dyt(i) T T e
enddo 2 :c:z = :'_:-c (x({1i)+ * i)+ n*k 1
call deriwve(xh,yt.dym) Third swp. k 3 = F_xy((x(1)+0.5%n), (v(i)+0.5%h*k 2));
doz i=1.n k 4 = F xy((x(i)+h), (v(i)+k 3*n)):
ytiil=y(il+h*dym{i) B . S S
Ij.:,-'l]:l':i:|=lj.:|-'|:|:i:|+d:r'ﬂ:l{i} N ¥i(i+l) = w(i) + (1/6)*(k_1+2*k 2+2*k 3+k 4)*h; % main eguation
anddo 13 -
call deriwvs(x+h,yt,dyt) Fourth swp.
do 1« i=1.n Accumulate increments with proper weights.
yout(il=y (i) +he*{dyde (i) +dyt (i) +2. *dymi{id)
anddo 14
return
END
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General Algorithm for Single-Step Methods

HEach of the k stages of the algorithm computes slope S, by
evaluating f t, for a particular value of t and a value of Yy
obtained by taking lihear combinations of the previous slopes:

it +ayhy, +hS 5.0 = 1.....k
=1

[ The proposed step is also a linear combination of the slopes:

yn+1 — yn + hZ]/iS

LError is estimated from yet another linear combination of the slopes:

L The parameters are determined by matching terms in the
Taylor series expansion of the slopes — the order of the

K
method is the exponent of the smallest power of h that
— h E 5 S. cannot be matched

dIn MATLAB ODE numerical routines are named as
odennxx, where nn indicates the order and xx is some special
feature of the method.
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Example: MATLAB ode23 Function

(Bogacki and Shampine BS23 Algorithm)

Sl = f(tm yn)

52
s
yn ] yn
tn tn+h tn tn+h/2

S,=f(t +—,y. +—=5)

2 2
] y 3 3
> / S3:f(t“+2h’y”+1h32)

N

Yo =Y. +g(251 +3s, +4s,)

S €. :7—hz(—531 + 65, +8s,-95,)

L =1 h; Sy = 1E(tn+1a Yier) )
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Special Numerical Algorithms

are Required for the So-Called Stiff ODEs

JODE is stiff if the solution being sought is varying slowly, but there are nearby
solutions that vary rapidly, so the numerical method must take small steps to obtain
satisfactory results

Although the initial conditions are such as
to give the solid line as solution, the
stability of the integration (dotted line) is
determined by the more rapidly varying
dashed line solution, even after that
solution has effectively died away to zero

Implicit methods offer cure for stifness:
explicit

y'=-Cy,c>0 = y. =Yy +Aty =(1-CAl)y,
At>2/c < |y,| > wasn— oo

implicit
. Y,

=—Cy = =y +Aly =Yy . =
y y yn+1 yn yn+1 yn+1 l-I-CAt
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