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Terminology for ODEs
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Ordinary:

 
only

 
one independent variable

Differential:
 

unknown functions enter into the 
equation through its derivatives 

Order:
 

highest derivative in F

Degree:
 

exponent of the highest derivative
32

2Example: ( ) ( ) 0d y t y t
dt

 
  

 



Numerical methods for ODEPHYS 460/660: Computational Methods of Physics

What Does It Mean to Solve ODE?

A
 

problem involving ODE is not completely specified by 
its equation

ODE has to be supplemented with
 

boundary conditions:

( )y y t

•Initial value problem:

 

is given at some starting value      , 
and it is desired to find      at some  final points        or at some 
discrete list of points (for example, at tabulated intervals).

•Two point bondary

 

value problem:

 

Boundary conditions are 
specified at more than one     ; typically some of the conditions 
will be specified at     and some at     .

y ity ft

t
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What Does it Mean to Numerically Solve ODE 
with the Initial Value Conditions?

  0 0
( ) , ( ) ; ( )dy t f t y t y t y

dt
 

A numerical solution to this problem generates sequence of values for 
the independent variable

and a corresponding sequence of values of the dependent variable

so that each         approximates

 

solution at      :  

1 2, , , nt t t

1 2, , , ny y y
ny nt

( ) , 0,1,n ny t y n  



Numerical methods for ODEPHYS 460/660: Computational Methods of Physics

Euler Method Fundamentals
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Eulery

All finite difference methods start from  the same conceptual idea:

 

Add small 
increments to your function corresponding to derivatives (right-hand side of the 
equations) multiplied by the stepsize.

Euler method

 

is an implementation of this idea in the simplest and most direct 
form.

DEFICIENCES OF EULER METHOD

Tiny steps are needed to get even 
a few digits accuracy. 
The biggest defect of Euler 
method is actually inability to 
provide an error estimate.
Thus, there is no automatic way to 
determine what step size is needed 
to achieve a specified accuracy. 
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Euler Algorithm for First-Order ODE 
Converted Into MATLAB Code

( , )dy f t y
dt
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%MATLAB code
;

;
while t <= tfinal
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end
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Step Size Effects in Radioactive Decay

Analytics: ( 0)
t

U U
U U

dN N N N t e
dt






    

 2

1

Numerics (Euler):
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Numerical solution will depend 
on the step size

t
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Stability of Euler Algorithm

t

1

(0) 1,

After n Euler steps of size :
(1 )

at

n
n n n n

dy ay y y e
dt

t
y y ay t y a t





    



      

Approximate solution will decay monotonically only if          is small enough:

For a single decaying exponential-like solution (i.e. if there is only one 
first order equation) the existence of a stability criterion is not a 
problem because            has to be small for the reasons of accuracy.t

Step size if often limited by the stability criterion:

max
1t t
a
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Accuracy:
 Discretization

 
and Roundoff

 
Errors

Local:

Global:
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Number of steps for roundoff error to be comparable with the discretization error: 
pCN L

L
   

 

Integrate over interval: Full Error: 0 p
f

LL t t Ch
h


   

Method is of order n iff:
1 1( )n n

n nLE O h LE Ch   

1n nh t t t   

special case 
where global 

error is trivially 
sum of local 

errors
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Global Discretization
 

Error by Example
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Suppose we want to find the solution over the interval          

→

 

we first divide the interval into n equal steps
 0,T

t T n 



 

This is a measure of the 
global truncation error, 
i.e., the error over a fixed 
range in t. 


 

It is proportional to the 
first power of the step 
size, and hence the Euler 
method is a first order 
method -

 

do not confuse 
this with the fact that 
we are applying it to the 
case to a first order 
equation
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Reducing Higher Order ODE to a 
System of First Order ODE

Solve higher order ODEs
 

by splitting them into sets of first 
order equations:

2

2 ( ) ( ) ( )

( ) ( ) ( )

There is no unique way to do this:

( )( ) ( )
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d y dyp t q t y g t
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dydt z
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Example: Realistic Motion of Baseball
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More Realistic Modeling Beyond Laminar 
Air Flow: Turbulence Effects
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ODE for Linear Harmonic Oscillator
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Euler Method for Linear Harmonic Oscillator
Switch to dimensionless quantities:
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Euler discretization
 

scheme:
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Euler Method Fails for ( )t
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( )tEuler Method Fails for
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Euler Fails for Phase Space Trajectory
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Can We Save Euler Method by 
Using Smaller Step Size?
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Cromer Fix for Euler Method Applied to LHO
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Apparently trivial trick, but:
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From Euler to Higher Order Algorithms
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Midpoint Method: Second Order Runge-Kutta
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Classic Runge-Kutta
 

Method
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Fourth-order method
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Classic Runge-Kutta: 
Fortran Program vs. Matlab

 
Script

MATLAB
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General Algorithm for Single-Step Methods
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Each of the k stages of the algorithm computes slope      by 
evaluating                 for  a particular value of        and

 

a value of     
obtained by taking linear combinations of the previous slopes: 

is( , )f t y t y

The proposed step is also a linear combination of the slopes:

1
1

k

n n i i
i

y y h s


  
Error is estimated from yet another linear combination of the slopes:

1
1

k

n i i
i

e h s


 
The parameters are determined by matching terms in the 
Taylor series expansion of the slopes → the order of the 
method is the exponent of the smallest power of h that 
cannot be matched 

In MATLAB ODE numerical routines are named as 
odennxx, where nn

 

indicates the order and xx

 

is some special 
feature of the method.
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Example: MATLAB ode23 Function
 (Bogacki

 
and Shampine

 
BS23 Algorithm)
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Special Numerical Algorithms 
are Required for the So-Called Stiff ODEs

ODE is stiff if the solution being sought is varying slowly, but

 

there are nearby 
solutions that vary rapidly, so the numerical method must take small steps to obtain 
satisfactory results

Implicit methods offer cure for stifness:
explicit

1

implicit

1 1 1

, 0 (1 )
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Although the initial conditions are such as 
to give the solid line as solution, the 

stability of the integration (dotted line) is 
determined by the more rapidly varying 

dashed line solution, even after that 
solution has effectively died away to zero
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