Numerical Methods for Ordinary Differential Equations

Branislav K. Nikolić

Department of Physics \& Astronomy, University of Delaware, Newark, DE 19716, U.S.A. PHYS 460/660: Computational Methods of Physics http://wiki.physics.udel.edu/phys660

Terminology for ODEs

$$
F\left(y, \frac{d}{d t} y(t), \frac{d^{2}}{d t^{2}} y(t), \ldots, \frac{d^{n}}{d t^{n}} y(t)\right)=0
$$

DOrdinary: only one independent variable
aDifferential: unknown functions enter into the equation through its derivatives
OOrder: highest derivative in F
aDegree: exponent of the highest derivative

$$
\text { Example: }\left(\frac{d^{2}}{d t^{2}} y(t)\right)^{3}-y(t)=0
$$

What Does It Mean to Solve ODE?

$$
y=y(t)
$$

DA problem involving ODE is not completely specified by its equation

GODE has to be supplemented with boundary conditions:

- Initial value problem: Y is given at some starting value t_{i}, and it is desired to find y at some final points t_{f} or at some discrete list of points (for example, at tabulated intervals).
- Two point bondary value problem: Boundary conditions are specified at more than one t; typically some of the conditions will be specified at t_{i} and some at t_{f}.

What Does it Mean to Numerically Solve ODE with the Initial Value Conditions?

$$
\frac{d y(t)}{d t}=f(t, y(t)) ; y\left(t_{0}\right)=y_{0}
$$

DA numerical solution to this problem generates sequence of values for the independent variable

$$
t_{1}, t_{2}, \ldots, t_{n}
$$

and a corresponding sequence of values of the dependent variable

$$
y_{1}, y_{2}, \ldots, y_{n}
$$

so that each \boldsymbol{Y}_{n} approximates solution at $\boldsymbol{t}_{\boldsymbol{n}}$:

$$
y\left(t_{n}\right) \approx y_{n}, \quad n=0,1, \ldots
$$

Euler Method Fundamentals

DAll finite difference methods start from the same conceptual idea: Add small increments to your function corresponding to derivatives (right-hand side of the equations) multiplied by the stepsize.
aEuler method is an implementation of this idea in the simplest and most direct form.

Euler Algorithm for First-Order ODE Converted Into MATLAB Code

dy $=f(t, y) \longrightarrow \Delta y=f(t, y) \Delta t$

 \%MATLAB code$$
t=t_{0}
$$

$$
y=y_{0}
$$

while $\mathrm{t}<=$ tfinal

$$
\begin{aligned}
& y=y+h * f e v a l(f, t, y) \\
& t=t+h
\end{aligned}
$$

end

Step Size Effects in Radioactive Decay

Numerics (Euler):

Stability of Euler Algorithm

aStep size if often limited by the stability criterion:

$$
\frac{d y}{d t}=-a y \Rightarrow y(0)=1, y=e^{-a t}
$$

After n Euler steps of size Δt :

$$
y_{n+1}=y_{n}-a y_{n} \Delta t \Rightarrow y_{n}=(1-a \Delta t)^{n}
$$

Approximate solution will decay monotonically only if Δt is small enough:

$$
\Delta t \leq \Delta t_{\max } \equiv \frac{1}{a}
$$

aFor a single decaying exponential-like solution (i.e. if there is only one first order equation) the existence of a stability criterion is not a problem because Δt has to be small for the reasons of accuracy.

Accuracy:
 Discretization and Roundoff Errors

DLocal:

 Integrate over interval: $L=t_{f}-t_{0} \Rightarrow \underset{\text { Full Error: } C h^{p}+\frac{L \varepsilon}{h_{1}}, ~}{\text {, }}$$$
\left.\begin{array}{l}
\frac{d u}{d t}=f\left(u_{n}, t_{n}\right) \\
u_{n}\left(t_{n}\right)=y_{n}
\end{array}\right\} \Rightarrow L E_{n}=y_{n+1}-u_{n+1}\left(t_{n+1}\right)
$$

GGlobal:
$G E_{n}=y_{n}-y\left(t_{n}\right)$
aMethod is of order n iff:

$$
\begin{gathered}
L E_{n}=O\left(h^{n+1}\right) \Leftrightarrow\left|L E_{n}\right| \leq C h^{n+1} \\
h=t_{n+1}-t_{n} \equiv \Delta t
\end{gathered}
$$

Global Discretization Error by Example

\square Suppose we want to find the solution over the interval $[0, T]$
\rightarrow we first divide the interval into n equal steps $\Delta t=T / n$
$y(T)=e^{-a T}, \quad y_{n}=\left(1-a \frac{T}{n}\right)^{n}$
$y(T)=1-a T+\frac{(a T)^{2}}{2!}-\frac{(a T)^{3}}{3!}+\ldots$
$y_{n}=1-a T+\frac{n(n-1)}{n^{2}} \frac{(a T)^{2}}{2!}-\frac{n(n-1)(n-2)}{n^{3}} \frac{(a T)^{3}}{3!}+\ldots$
$y(T)-y_{n}=\frac{1}{n} \frac{(a T)^{2}}{2!}-\frac{3}{n} \frac{(a T)^{2}}{3!}+\ldots+O\left(\frac{1}{n^{2}}\right) \sim \frac{a \Delta t}{2} a T e^{-a T}$

Reducing Higher Order ODE to a System of First Order ODE

-Solve higher order ODEs by splitting them into sets of first order equations:

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=g(t) \\
& z=\frac{d y}{d t} \Rightarrow\left\{\begin{array}{l}
\frac{d z}{d t}=g(t)-p(t) z-q(t) y \\
\frac{d y}{d t}=z
\end{array}\right.
\end{aligned}
$$

There is no unique way to do this:

$$
z=\frac{d y}{d t}+p(t) y \Rightarrow\left\{\begin{array}{l}
\frac{d z}{d t}=g(t)+\left(\frac{d p(t)}{d t}-q(t)\right) y \\
\frac{d y}{d t}=z-p(t) y
\end{array}\right.
$$

Example: Realistic Motion of Baseball

$\nu+\omega r$
initialize $t_{1}, \vec{y}\left(t_{1}\right)$

$$
m \frac{d^{2} \vec{r}}{d t^{2}}=m \vec{g}-B_{2} v^{2} \frac{\vec{v}}{v}+S_{0} \vec{v} \times \vec{\omega}
$$

$$
\begin{aligned}
& x_{i+1}=x_{i}+v_{i}^{x} \Delta t \\
& v_{i+1}^{x}=v_{i}^{x}-\frac{B_{2}}{m} v v_{i}^{x} \Delta t \\
& y_{i+1}=y_{i}+v_{i}^{y} \Delta t \\
& v_{i+1}^{y}=v_{i}^{y}-g \Delta t \\
& z_{i+1}=z_{i}+v_{i}^{z} \Delta t \\
& v_{i+1}^{z}=v_{i}^{z}-\frac{S_{0} v_{x} \omega}{m} \Delta t
\end{aligned}
$$ do while $i \leq n$

$$
\begin{aligned}
& \vec{y}_{i+1}=\vec{y}_{i}+f\left(t_{i}, \vec{y}_{i}\right) \Delta t \\
& t_{i+1}=t_{i}+\Delta t
\end{aligned}
$$

end do

More Realistic Modeling Beyond Laminar Air Flow: Turbulence Effects

ODE for Linear Harmonic Oscillator

$$
\begin{aligned}
& \frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \sin \theta=0 \\
& \text { for small } \theta \Rightarrow \sin \theta \approx \theta
\end{aligned}
$$

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \theta=0, \quad \Omega=\sqrt{\frac{g}{l}}
$$

$$
E_{\text {total }}=\frac{1}{2} m l^{2}\left(\frac{d \theta}{d t}\right)^{2}+\frac{1}{2} m g l \theta^{2} \text { must be conserved! }
$$

Euler Method for Linear Harmonic Oscillator

QSwitch to dimensionless quantities:

$$
\begin{aligned}
& \frac{d^{2} \theta}{d t^{2}}+\theta=0 \Rightarrow \theta=\theta_{0} \sin (\Omega t+\phi) \\
& E_{\text {total }}=\frac{1}{2}\left(\frac{d \theta}{d t}\right)^{2}+\frac{1}{2} \theta^{2}
\end{aligned}
$$

-Euler discretization scheme:

$$
\left.\begin{array}{l}
\omega_{n+1}=\omega_{n}-\theta_{n} \Delta t \\
\theta_{n+1}=\theta_{n}+\omega_{n} \Delta t \\
t_{n+1}=t_{n}+\Delta t
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
E_{\text {total }}=\frac{1}{2}\left(\omega_{n+1}^{2}+\theta_{n+1}^{2}\right) \\
E_{\text {total }}=E_{n}\left(1+\Delta t^{2}\right)
\end{array}\right.
$$

Euler Method Fails for $\theta(t)$

Euler Method Fails for $\omega(t)$

Euler Fails for Phase Space Trajectory

Can We Save Euler Method by Using Smaller Step Size?

Cromer Fix for Euler Method Applied to LHO

$$
\omega_{n} \rightarrow \omega_{n+1} \Rightarrow\left\{\begin{array}{l}
\omega_{n+1}=\omega_{n}-\theta_{n} \Delta t \\
\theta_{n+1}=\theta_{n}+\omega_{n+1} \Delta t \\
t_{n+1}=t_{n}+\Delta t
\end{array}\right.
$$

-Apparently trivial trick, but:

$$
\begin{aligned}
& E_{n+1}=E_{n}+\frac{1}{2}\left(\omega_{n}{ }^{2}-\theta_{n}{ }^{2}\right) \Delta t^{2}+O\left(\Delta t^{3}\right) \\
& \underbrace{\theta=\theta_{0} \sin \left(t-t_{0}, \quad \omega=\theta_{0} \cos \left(t-t_{0}\right)\right.}_{\left\langle\omega^{2}-\theta^{2}=\theta_{0}^{2}{ }^{2} \cos 2\left(t-t_{0}\right)\right)_{\text {Jerea periad }}=0}
\end{aligned}
$$

From Euler to Higher Order Algorithms

Figue 16.1.1. Euler's method. In this simplest (and least accurate) method for integrating an ODE, the denvative at the starting point of each interval is extrapolated to find the next function value. The method has first-order accuracy.

$$
\begin{aligned}
& y_{n+1}=y_{n}+f\left(t_{n}, y_{n}\right) \\
& t_{n+1}=t_{n}+h
\end{aligned}
$$

Mean value theorem
vs.

$$
y(t+\Delta t) \stackrel{\text { exact }}{=} y(t)+d y /\left.d t\right|_{t_{m}} \Delta t
$$

Midpoint Method: Second Order Runge-Kutta

$$
s_{1}=f\left(t_{n}, y_{n}\right)
$$

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at each step to find a point halfway across the interval, then using the midpoint derivative across the full width of the interval. In the figure, filled dots represent final function values, while open dots represent function values that are discarded once their derivatives have been calculated and used.

$$
\begin{aligned}
& y_{n+1}=y_{n}+h s_{2}+O\left(h^{3}\right) \\
& t_{n+1}=t_{n}+h
\end{aligned}
$$

Classic Runge-Kutta Method

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the final function value (shown as a filled dot) is calculated. (See text for details.)

$$
\begin{aligned}
& \overleftarrow{y_{n+1}}=y_{n}+\frac{h}{6}\left(s_{1}+2 s_{2}+2 s_{3}+s_{4}\right)+O\left(h^{5}\right) \\
& t_{n+1}=t_{n}+h
\end{aligned}
$$

Classic Runge-Kutta: Fortran Program vs. Matlab Script

SUBROUTINE rk4(y,dydx,n,x,h,yout, derivs)

IIITEGER n , MMAX

REAL $h, x, d y d x(n), y(n)$, yout (n)
EXTERIIAL derivs
PARAMETER ($\mathrm{IMMAX}=50$)
Set to the maximum number of functions.
Given values for the variables $y(1: n)$ and their derivatives $d y d x(1: n)$ known at x, use the fourth-order Runge-Kutta method to advance the solution over an interval h and return the incremented variables as yout ($1: \mathrm{n}$), which need not be a distinct array from y . The user supplies the subroutine derivs ($x, y, d y d x$), which returns derivatives dydx at x.

IIITEGER i

REAL h6, hh, xh, dym(NMAX), dyt (mAX), yt (mMAX)

```
hh=h*0.5
```

$\mathrm{h} 6=\mathrm{h} / 6$.
$x h=x+h h$
do ${ }_{11} \mathrm{i}=1, \mathrm{n} \quad$ First step.
$y t(i)=y(i)+h h * d y d x$ (i)
enddo 11
call derivs ($x h, y t, d y t$)
do $12 \mathrm{i}=1, \mathrm{n}$
$y t(i)=y(i)+h h * d y t(i)$
enddo 12
call derivs ($x \mathrm{~h}, \mathrm{yt}, \mathrm{dym}$) Third step.
do $13 \mathrm{i}=1, \mathrm{n}$
$y t(i)=y(i)+h * d y m(i)$
$\operatorname{dym}(i)=d y t(i)+d y m(i)$
enddo 13
call derivs ($x+h, y t, d y t$)
do $14 i=1, n$

Fourth step.
Accumulate increments with proper weights.
yout(i) $=y$ (i) $+\mathrm{h} 6 *(\mathrm{dydx}(\mathrm{i})+\mathrm{dyt}(\mathrm{i})+2 . * \operatorname{dym}(\mathrm{i}))$
enddo 14
return
EHD

General Algorithm for Single-Step Methods

DEach of the k stages of the algorithm computes slope S_{i} by evaluating $f(t, y)$ for a particular value of t and a value of y obtained by taking linear combinations of the previous slopes:

$$
s_{i}=f\left(t_{n}+\alpha_{i} h, y_{n}+h \sum_{j=1}^{i-1} \beta_{i, j} s_{j}\right), i=1, \ldots, k
$$

\square The proposed step is also a linear combination of the slopes:

$$
y_{n+1}=y_{n}+h \sum_{i=1}^{k} \gamma_{i} s_{i}
$$

-Error is estimated from yet another linear combination of the slopes:
-The parameters are determined by matching terms in the
$e_{n+1}=h \sum_{i=1}^{k} \delta_{i} s_{i}$ Taylor series expansion of the slopes \rightarrow the order of the method is the exponent of the smallest power of h that cannot be matched
-In MATLAB ODE numerical routines are named as odenn $x x$, where $n n$ indicates the order and $x x$ is some special feature of the method.

Example: MATLAB ode 23 Function (Bogacki and Shampine BS23 Algorithm)

$$
s_{1}=f\left(t_{n}, y_{n}\right)
$$

$$
s_{2}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} s_{1}\right)
$$

$$
\underbrace{s_{3}=f\left(t_{n}+\frac{3}{4} h, y_{n}+\frac{3}{4} h s_{2}\right)}
$$

$$
\left.\begin{array}{l}
y_{n+1}=y_{n}+\frac{h}{9}\left(2 s_{1}+3 s_{2}+4 s_{3}\right) \\
t_{n+1}=t_{n}+h ; s_{4}=f\left(t_{n+1}, y_{n+1}\right)
\end{array}\right\} e_{n+1}=\frac{h}{72}\left(-5 s_{1}+6 s_{2}+8 s_{3}-9 s_{4}\right)
$$

Special Numerical Algorithms are Required for the So-Called Stiff ODEs

GODE is stiff if the solution being sought is varying slowly, but there are nearby solutions that vary rapidly, so the numerical method must take small steps to obtain satisfactory results

Implicit methods offer cure for stifness:

$$
\begin{gathered}
y^{\prime}=-c y, c>0 \stackrel{\text { explicit }}{\Rightarrow} y_{n+1}=y_{n}+\Delta t y_{n}^{\prime}=(1-c \Delta t) y_{n} \\
\Delta t>2 / c \Leftrightarrow\left|y_{n}\right| \rightarrow \infty \text { as } n \rightarrow \infty
\end{gathered}
$$

$$
y^{\prime}=-c y \stackrel{\text { implicit }}{\Rightarrow} y_{n+1}=y_{n}+\Delta t y_{n+1}^{\prime} \Rightarrow y_{n+1}=\frac{y_{n}}{1+c \Delta t}
$$

