
Motivation

Introductory Fortran Programming

Gunnar Wollan

Department of Geosciences
University of Oslo, N-0315 Oslo, Norway

Spring 2005

Gunnar Wollan Introductory Fortran Programming

Motivation

Motivation

1 Motivation

Gunnar Wollan Introductory Fortran Programming

Motivation
About Fortran 77 and 95

Contents

Gentle introduction to Fortran 77 and 95 programming

File I/O

Arrays and loops

Detailed explanation of modules

Computational efficiency aspects

Using modules as objects

The promise of Fortran 2003

Gunnar Wollan Introductory Fortran Programming

Motivation
About Fortran 77 and 95

Required background

Programming experience with either C++, Java or Matlab

Interest in numerical computing using Fortran

Interest in writing efficient programs utilizing low-level details
of the computer

Gunnar Wollan Introductory Fortran Programming

Motivation
About Fortran 77 and 95

About learning Fortran

Fortran is a less complicated language than C++ and Java

Even so it takes time to master the advanced details of
Fortran 95

At least 6 months to a year working with Fortran 95 before
you are familiar with the details

Four days can only get you started

You need to use Fortran 95 in your own projects to master the
language

Fortran 77 code is not the main topic here, but you need to
have some knowledge of it

Gunnar Wollan Introductory Fortran Programming

Motivation
About Fortran 77 and 95

Teaching philosophy

Intensive course

Lectures 9 - 12

Hands-on training 13 - 16

Learn form dissecting examples

Get in touch with the dirty work

Get some overview of advances topics

Focus on principles and generic strategies

Continued learning on individual basis

This course just get you started - use textbooks, reference manuals
and software examples from the internet for further work with
projects

Gunnar Wollan Introductory Fortran Programming

Motivation
About Fortran 77 and 95

recommended attidude

Dive into executable examples

Don’t try to understand everything

Try to adapt examples to new problems

Look up technical details in manuals/textbooks

Learn on demand

Keep a cool head

Make your program small and fast - then your software long
will last

Gunnar Wollan Introductory Fortran Programming

Motivation
About Fortran 77 and 95

About Fortran 77 and 95

2 About Fortran 77 and 95

Gunnar Wollan Introductory Fortran Programming

About Fortran 77 and 95
Intro to Fortran 77 programming

Fortran 77

Into the early/middle of the nineties Fortran 77 was the
dominating language for number crunching

It’s predecessor Fortran IV was replaced by Fortran 77 in the
early eighties.

The first version of Fortran was written in 1957 and the
language has evolved over time.

Like many procedural languages Fortran has a failry simple
syntax

Fortran is good for only one thing, NUMBERCRUNCHING

Gunnar Wollan Introductory Fortran Programming

About Fortran 77 and 95
Intro to Fortran 77 programming

Fortran 95

Fortran 95 extends Fortran 77 with

Nicer syntax, free format instead of fixed format

User defined datatypes using the TYPE declaraion

Modules containing data definitions and procedure
declarations

No implicit variable declaretions, avoiding typing errors

Fortran 77 is a subset of fortran 95

Gunnar Wollan Introductory Fortran Programming

About Fortran 77 and 95
Intro to Fortran 77 programming

Fortran versus other languages

C is low level and close to the machine, but can be error prone

C++ is a superset of C and more reliable

Java is simpler and more reliable than C++

Python is more high-level than Java

Gunnar Wollan Introductory Fortran Programming

About Fortran 77 and 95
Intro to Fortran 77 programming

Speed of Fortran versus other languages

Fortran 77 is regarded as very fast

C yield slightly slower code

C++ and fortran 95 are slower than Fortran 77

Java is much slower

Gunnar Wollan Introductory Fortran Programming

About Fortran 77 and 95
Intro to Fortran 77 programming

Some guidelines

Fortran 77 gives very fast programs, but the source code is
less readable and more error prone due to implicit declarations

Use Fortran 95 for your main program and Fortran 77
functions where speed is critical

Sometimes the best solution is a combination of languages,
e.g. Fortran, Python and C++

Use the language best suited for your problem

Gunnar Wollan Introductory Fortran Programming

About Fortran 77 and 95
Intro to Fortran 77 programming

Intro to Fortran 77 programming

3 Intro to Fortran 77 programming

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 77 programming
Intro to Fortran 95 programming

Our first Fortran 77 program

Goal: make a program writing the text “Hello World”

Implementation

Without declaring a string
With string declaration

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 77 programming
Intro to Fortran 95 programming

Without declaring a string variable

C234567

PROGRAM hw1

WRITE(*,*) ’Hello World’

END PROGRAM hw1

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 77 programming
Intro to Fortran 95 programming

With declaring a string variable

C234567

PROGRAM hw1

CHARACTER*11 str

WRITE(*,*) str

END PROGRAM hw1

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 77 programming
Intro to Fortran 95 programming

Some comments to the “Hello World” program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 77 programming
Intro to Fortran 95 programming

Intro to Fortran 95 programming

4 Intro to Fortran 95 programming

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

Scientific Hello World in Fortran 95

Usage:

./hw1 2.3

Output of the program hw1

Hello, World! sin(2.3)=0.745705

What to learn
1 Store the first command-line argument in a floating-point

variable
2 Call the sine function
3 Write a combination of text and numbers to the screen

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

The code

PROGRAM hw1

IMPLICIT NONE

DOUBLE PRECISION :: r, s

CHARACTER(LEN=80) :: argv ! Input argument

CALL getarg(1,argv) ! A C-function

r = a2d(argv) ! Our own ascii to

! double

s = SIN(r) ! The intrinsic SINE

! function

PRINT *, ’Hello Word sin(’,r,’)=’,s

END PROGRAM hw1

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

Dissection(1)

Contrary to C++ the compiler does not need to se a
declaration of subroutines and intrinsic functions

Only external functions must be declared

Comments in Fortran 95 are the ! on a line

The code is free format unlike Fortran 77

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

Dissection(2)

All programs written in Fortran begins with the statement
PROGRAM program name and ends with the statement END
with the optional PROGRAM program name

Unlike C++ and other programming language Fortran has no
built in transfer of command line arguments

A call to a C-function getarg(n,argv) transfers the n’th
argument to the character-string variable argv

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

Dissection(2)

Floating point variables in Fortran
1 REAL: single precision
2 DOUBLE PRECISION: double precision

a2d: your own ascii string to double function, Fortran has no
intrinsic functions of this kind in contrast to C/C++ so you
have to write this one yourself

Automatic type conversion: DOUBLE PRECISION = REAL

The SIN() function is an intrinsic function and does not need
a specific declaration

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

An interactive version

Let us ask the user for the real number instead of reading it
from the command line

WRITE(*.FMT=’(A)’,ADVANCE=’NO’) ’Give a real number: ’

READ(*,*) r

s = SIN(r)

! etc.

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

Scientific Hello World in Fortran 77

C234567

PROGRAM hw1

REAL*8 r,s

CHARACTER*80 argv

CALL getarg(1,argv)

r = a2d(argv)

s = SIN(r)

WRITE(*,*)’Hello World! sin(’,r’)=’,s

END PROGRAM hw1

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

Differences from the Fortran 95 version

Fortran 77 uses REAL*8 instead of DOUBLE PRECISION

Fortran 77 lacks IMPLICIT NONE directive

A double precision variable has to be declared in Fortran 77
since default real numbers are single precision

Gunnar Wollan Introductory Fortran Programming

Intro to Fortran 95 programming
Compiling and linking Fortran programs

Compiling and linking Fortran programs

5 Compiling and linking Fortran 95 programs

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

How to compile and link (Fortran 95)

One step (compiling and liking):

unix> f90 -Wall -O3 -o hw1 hw1.f90

Two steps:

unix> f90 -Wall -O3 -c hw1.f90 #Compile, result: hw1.o

unix> f90 -o hw1 hw1.o # Link

A linux system with Intel Fortran Compiler:

linux> ifort -Wall -O3 -o hw1 hw1.f90

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

Using the make utility to compile a program

What is the make utility?

the make utility reads a file containing the name(s) of the
file(s) to be compiled togehter with the name of the
executable program
The makefile is either called “makefile” or “Makefile” as
default

Invoking the make utiltity:

unix-linux> make

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

A short example of a makefile

FC= f90

$(shell ls *.f90 ./srclist)

SRC=$(shell cat ./srclist)

OBJECTS= $(SRC:.f90=.o)

prog : $(OBJECTS)

$(FC) -o $@ $(OBJECTS)

%.o : %.f90

$(FC) -c $?

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

Rolling yourown make script

The main feature of a makefile is to check time stamps in files
and only recompile the required files

Since the syntax of a makefile is kind of awkward and each
flavour of unix has its own specialities you can make your own
script doing almost the same

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

The looks of the make.sh script(1)

#!/bin/sh

if [! -n ‘‘$F90_COMPILER’’]; then

case ‘uname -s‘ in

Linux)

F90_COMPILER=ifort

F90_OPTIONS=’’-Wall -O3’’

;;

*)

F90_COMPILER=f90

F90_OPTIONS=’’-Wall -O3’’

esac

fi

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

The looks of the make.sh script(2)

files=‘/bin/ls *.f90‘

for file in files; do

stem=‘echo $file | sed ’s/\.f90//’‘

echo $F90_COMPILER $F90_OPTIONS -I. -o $stem $file

$F90_COMPILER $F90_OPTIONS -I. -o $stem $file

ls -s stem

done

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

How to compile and link (Fortran 77)

Either use the f90 compiler or if present the f77 compiler

Rememeber that Fortran 77 is s subset of Fortran 95

An example:

f90 -o prog prog.f or

f77 -o prog prog.f

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

How to compile and linkin general

We compile a set of programs in Fortran and C++

Compile each set of files with the right compiler:

unix$>$ f90 -O3 -c *.f90

unix$>$ g++ -O3 -c *.cpp

Then link:

unix$>$ f90 -o exec_file -L/some/libdir \\

-L/other/libdir *.o -lmylib -lyourlib

Library type: lib*.a: static; lib*.so: dynamic

Gunnar Wollan Introductory Fortran Programming

Compiling and linking Fortran 95 programs
Manipulate data files

Manipulate data files

6 Manipulate data files

Gunnar Wollan Introductory Fortran Programming

Manipulate data files
File handling in Fortran

Example: Data transformation

Suppose we have a file with xy-data

0.1 1.1

0.2 1.8

0.3 2.2

0.4 1.8

and that we want to transform the y data using some
mathematical function f(y)

Goal: write a Fortran 95 program that reads the file,
transforms the y data and write the new xy-data to a new file

Gunnar Wollan Introductory Fortran Programming

Manipulate data files
File handling in Fortran

Program structure

1 Read the names of input and output files as command-line
arguments

2 Print error/usage message if less than two command-line
arguments are given

3 Open the files
4 While more data in the file:

read x and y from the input file
set y=myfunc(y)
write x and y to the output file

5 Close the files

Gunnar Wollan Introductory Fortran Programming

Manipulate data files
File handling in Fortran

The fortran 95 code(1)

FUNCTION myfunc(y) RESULT(r)

IMPLICIT NONE

DOUBLE PRECISION, INTENT(IN) :: y

DOUBLE PRECISION :: r

IF(y>=0.) THEN

r = y**0.5*EXP(-y)

ELSE

r = 0.

END IF

END FUNCTION myfunc

Gunnar Wollan Introductory Fortran Programming

Manipulate data files
File handling in Fortran

The fortran 95 code(2)

PROGRAM dtrans

IMPLICIT NONE

INTEGER :: argc, rstat

DOUBLE PRECISION :: x, y

CHARACTER(LEN=80) :: infilename, outfilename

INTEGER,PARAMETER :: ilun = 10

INTEGER,PARAMETER :: olun = 11

INTEGER, EXTERNAL :: iargc

argc = iargc()

IF (argc < 2) THEN

PRINT *, ’Usage: dtrans infile outfile’

STOP

END IF

CALL getarg(1,infilename)

CALL getarg(2,outfilename)

Gunnar Wollan Introductory Fortran Programming

Manipulate data files
File handling in Fortran

The fortran 95 code(3)

OPEN(UNIT=ilun,FILE=infilename,FORM=’FORMATTED’,&

IOSTAT=rstat)

OPEN(UNIT=olun,FILE=outfilename,FORM=’FORMATTED’,&

IOSTAT=rstat)

rstat = 0

DO WHILE(rstat == 0)

READ(UNIT=ilun,FMT=’(F3.1,X,F3.1)’,IOSTAT=rstat)&

x, y

IF(rstat /= 0) THEN

CLOSE(ilun)

CLOSE(olun)

STOP

END IF

y = myfunc(y)

WRITE(UNIT=olun,FMT=’(F3.1,X,F3.1)’,IOSTAT=rstat)&

x, y

END DO

END PROGRAM dtrans

Gunnar Wollan Introductory Fortran Programming

Manipulate data files
File handling in Fortran

File handling in Fortran

7 File handling in Fortran

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

Fortran file opening

Open a file for reading

OPEN(UNIT=ilun,FORM=’FORMATTED’,IOSTAT=rstat)

Open a file for writing

OPEN(UNIT=ilun,FORM=’FORMATTED’,IOSTAT=rstat)

Open for appending data

OPEN(UNIT=ilun,FORM=’FORMATTED’,&

POSITION=’APPEND’,IOSTAT=rstat)

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

Fortran file reading and writing

Read a double precision number

READ(UNIT=ilun,FMT=’(F10.6)’,IOSTAT=rstat) x

Test if the reading was successful

IF(rstat /= 0) STOP

Write a double precision number

WRITE(UNIT=olun,FMT=’(F20.12)’,IOSTAT=rstat) x

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

Formatted output

The formatted output in Fortran is selected via the FORMAT
of FMT statement

In fortran 77 the FORMAT statement is used

C234567

100 FORMAT(F15.8)

WRITE(*,100) x

In Fortran 95 the FMT statement is used

WRITE(*,FMT=’(F15.8)’) x

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

A convenient way of formatting in Fortran 95(1)

Instead of writing the format in the FMT statement we can
put it in a string variable

CHARACTER(LEN=7) :: fmt_string

fmt_string = ’(F15.8)’

WRITE(*,FMT=fmt_string) x

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

A convenient way of formatting in Fortran 95(2)

We can use a set of such format strings

CHARACTER(LEN=7),DIMENSION(3) :: fmt_string

fmt_string(1) = ’(F15.8)’

fmt_string(2) = ’(2I4)’

fmt_string(3) = ’(3F10.2)’

WRITE(*,FMT=fmt_string(1)) x

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

Unformatted I/O in Fortran

More often than not we use huge amount of data both for
input and output

Using formatted data increase both the filesize and the time
spent reading and writing data from/to files

We therefore use unformatted data in these cases

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

Opening and reading an unformatted file

Open syntax:

OPEN(UNIT=ilun,FILE=infile,FORM=’UNFORMATTED’,&

IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,IOSTAT=rstat) array

the array variable can be a vector or a multidimensional matrix

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

Using direct access file I/O

In some cases it is advantageous to be able to read and write
the same portion of a file without reading it sequentially from
start

This is performed by using direct access file I/O

Open syntax:

OPEN(UNIT=ilun,FILE=infile,ACCESS=’DIRECT’,&

RECL=lng,IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,REC=recno,IOSTAT=rstat) array

The array most be of equal size to the record length and the
recno variable contains the record number to be read

The records are numbered from 1 and up

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

The namelist file

A special type of file exists in Fortran 95

It is the namelist file which is used for input of data mainly for
inititalizing purposes

Reading syntax:

INTEGER :: i, j, k

NAMELIST/index/i, j, k

READ(UNIT=ilun,NML=index,IOSTAT=rstat)

This will read from the namelist file values into the variables i,
j, k

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

The contents of a namelist file

Namelist file syntax:

&index i=10, j=20, k=4 /

A namelist file can contain more than one namelist

Gunnar Wollan Introductory Fortran Programming

File handling in Fortran
Arrays and loops

Arrays and loops

8 Arrays and loops

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Matrix-vector product

Goal: calculate a matrix-vector product

Make s simple example with known solution (simplifies
debugging)

Declare a matrix A and vectors x and b

Initialize A

Perform b = A ∗ x

Check that b is correct

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Basic arrays in Fortran

Fortran 77 and 95 uses the same basic array construction

Array indexing follows a quickly learned syntax:

q(3,2)

which is the same as in Matlab. Note that in C/C++ a multi
dimensional array is transposed

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Declaring basic vectors

Declaring a fixed size vector

INTEGER, PARAMETER :: n = 100

DOUBLE PRECISION, DIMENSION(n) :: x

DOUBLE PRECISION, DIMENSION(50) :: b

Vector indices starts at 1 not 0 like C/C++

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Looping over a vector

A simple loop

INTEGER :: i

DO i = 1, n

x(i) = f(i) + 3.14

END DO

! Definition of a function

DOUBLE PRECISION FUNCTION f(i)

INTEGER :: i

...

END FUNCTION f

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Declaring baxic matrices

Declaring a fixed size matrix

INTEGER, PARAMETER :: m = 100

INTEGER, PARAMETER :: n = 100

DOUBLE PRECISION, DIMENSION(m,n) :: x

Matrix indices starts at 1 not 0 like C/C++

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Looping over the matrix

A nested loop

INTEGER :: i, j

DO j = 1, n

DO i = 1, n

A(i,j) = f(i,j) + 3.14

END DO

END DO

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Note: matices are stored column wise; the row index should
vary fastest

Recall that in C/C++ matrices are stored row by row

Typical loop in C/C++ (2nd index in inner loop):

DO i = 1, m

DO j = 1, n

A(i,j) = f(i,j) + 3.14

END DO

END DO

We now traverse A in jumps

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Dynamic memory allocation

Very often we do not know the length of the array in advance

By using dynamic memory allocation we can allocate the
necessary chunk of memory at runtime

You need to allocate and deallocate memory

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Dynamic memeory allocation in Fortran 77

Static memory allocation (at compile time):

DOUBLE PRECISION, DIMENSION(100) :: x

Dynamic memory allocation (at runtime):

DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: x

ALLOCATE(x(100))

...

DEALLOCATE(x)

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Dynamic memeory allocation in Fortran 95

Theare are two ways of declaring allocatable matrices in
Fortran 95

Using the same attrribute ALLOCATABLE like in Fortran 77

Using a POINTER variable

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Allocating memory using a POINTER

Declare a pointer array variable

DOUBLE PRECISION, POINTER :: x(:)

ALLOCATE(x(100))

...

DEALLOCATE(x)

Keep in mind that a Fortran 95 POINTER is not the same as
a pointer in C/C++

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Declaring and initializing A, x and b

DOUBLE PRECISION, POINTER :: A(:,:), x(:), b(:)

CHARACTER(LEN=20) :: str

INTEGER :: n, i, j

CALL getarg(1,str)

n = a2i(str)

ALLOCATE(A(n,n)); ALLOCATE(x(n))

ALLOCATE(b(n))

DO j = 1, n

x(j) = j/2.

DO i = 1, n

A(i,j) = 2. + i/j

END DO

END DO

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Matrix-vector product loop

Computation

DOUBLE PRECISION :: sum

DO j = 1, n

sum = 0.

DO i = 1, n

sum = sum + A(i,j) * x(i)

END DO

b(j) = sum

END DO

Gunnar Wollan Introductory Fortran Programming

Arrays and loops
Subroutines and functions in Fortran

Arrays and loops

9 Subroutines and functions in Fortran

Gunnar Wollan Introductory Fortran Programming

Subroutines and functions in Fortran
Pointers in Fortran 95

Subroutines

A subroutine do not return any value and is the same as a
void function in C/C++

In Fortran all aguments are passed as the address of the
variable in the calling program

This is the same as a call by refrence in C++

It is easy to for a C++ programmer to forget this and
accidentally change the contents of the variable in the calling
program

Gunnar Wollan Introductory Fortran Programming

Subroutines and functions in Fortran
Pointers in Fortran 95

An example of a subroutine

This subroutine will calculate the square root of two
arguments and returning the sum of the results in a third
argument

SUBROUTINE dsquare(x,y,z)

DOUBLE PRECISION, INTENT(IN) :: x, y

DOUBLE PRECISION, INTENT(OUT) :: z

z = SQRT(x) + SQRT(y)

END SUBROUTINE dsquare

Using the INTENT(IN) and INTENT(OUT) will prevent any
accidentally changes of the variable(s) in the calling program

Gunnar Wollan Introductory Fortran Programming

Subroutines and functions in Fortran
Pointers in Fortran 95

Functions

A function always return a value just like corresponding
functions in C/C++

The syntax of the function statement can be written in two
ways depending on the fortran version

In Fortran 77 it looks like a corresponding C++ function

But in fortran 95 another syntax has been introduced

Gunnar Wollan Introductory Fortran Programming

Subroutines and functions in Fortran
Pointers in Fortran 95

An example of a function Fortran 77 style

This function will calculate the square root of two arguments
and returning the sum of the results

DOUBLE PRECISION, FUNCTION dsquare(x,y)

DOUBLE PRECISION, INTENT(IN) :: x, y

DOUBLE PRECISION :: z

z = SQRT(x) + SQRT(y)

dsquare = z

END FUNCTION dsquare

Gunnar Wollan Introductory Fortran Programming

Subroutines and functions in Fortran
Pointers in Fortran 95

An example of a function Fortran 95 style

This function will calculate the square root of two arguments
and returning the sum of the results

FUNCTION dsquare(x,y), RESULT(z)

DOUBLE PRECISION, INTENT(IN) :: x, y

DOUBLE PRECISION :: z

z = SQRT(x) + SQRT(y)

END FUNCTION dsquare

Gunnar Wollan Introductory Fortran Programming

Subroutines and functions in Fortran
Pointers in Fortran 95

Pointers in Fortran 95

10 Pointers in Fortran 95

Gunnar Wollan Introductory Fortran Programming

Pointers in Fortran 95
Exercisex

More about pointers in Fortran 95

As mentioned earlier a pointer in Fortran 95 IS NOT the same
as a pointer in C/C++

A fortran 95 pointer is used as an alias to another variable, it
beeing a single variable, a vector or a multidimensional array

A pointer must be associated with a target variable or another
pointer

Gunnar Wollan Introductory Fortran Programming

Pointers in Fortran 95
Exercisex

Some examples of pointer usage(1)

A target pointer example

DOUBLE PRECISION, TARGET, DIMENSION(100) :: x

DOUBLE PRECISION, POINTER :: y(:)

...

y => x

...

y => x(20:80)

...

y => x(1:33)

NULLIFY(y)

Gunnar Wollan Introductory Fortran Programming

Pointers in Fortran 95
Exercisex

Some examples of pointer usage (2)

What happens when we try to access a deallocated array?

PROGRAM ptr

IMPLICIT NONE

DOUBLE PRECISION, POINTER :: x(:)

DOUBLE PRECISION, POINTER :: y(:)

ALLOCATE(x(100))

x = 0.

x(12:19) = 3.14

y => x(10:20)

PRINT ’(A,3F10.4)’, ’Y-value ’, y(1:3)

y => x(11:14)

DEALLOCATE(x)

PRINT ’(A,3F10.4)’, ’Y-value ’, y(1:3)

PRINT ’(A,4F10.4)’, ’X-value ’, x(11:14)

END PROGRAM ptr

Gunnar Wollan Introductory Fortran Programming

Pointers in Fortran 95
Exercisex

Some examples of pointer usage(3)

This is what happened

bullet.uio.no$ EXAMPLES/ptr

0.0000 0.0000 3.1400

0.0000 3.1400 3.1400

forrtl: severe (174): SIGSEGV,

segmentation fault occurred

When we try to access the x-array in the last PRINT
statement we get an segmentation fault

This means we try to access a variable which is not associated
with any part of the memory the program has access to

Gunnar Wollan Introductory Fortran Programming

Pointers in Fortran 95
Exercisex

Some examples of pointer usage(4)

In our little example we clearly see that the memory pointed
to by the x-array is no longer available

On the other hand the part of the memory the y-array is
pointing to is still available

To free the last part of memory the y-array refers to we must
nullify the y-array:

NULLIFY(y)

Gunnar Wollan Introductory Fortran Programming

Pointers in Fortran 95
Exercisex

Exercises

11 Exercises

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise1: Modify the Fortran 95 Hello World program

Locate the first Hello World program

Compile the program and test it

Modification: write “Hello World!” and format it so the text
and numbers are without unnecessary spaces

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise2: Extend the Fortran 95 Hello World program

Locate the first Hello World program

Read the three command-line arguments: start, stop and inc

Provide a “usage” message and abort the program in case
there are too few command-line arguments

Do r = start, stop, inc and compute the sine of r and write
the result

Write and additional loop using DO WHILE construction

Verify that the program works

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise3: Integrate a function(1)

Write a function

DOUBLE PRECISION FUNCTION trapezoidal(f,a,b,n)

DOUBLE PRECISION, EXTERNAL :: f

DOUBLE PRECISION :: a, b

INTEGER :: n

...

END FUNCTION trapezoidal

that integrate a user-defined function f between a and b using
the Trapezoidal rule with n points:∫ b

a f (x) dx ≈ h(f (a)
2 + f (b)

2 +
∑n−1

i=1 f (a + ih)), h = b−a
n−1

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise3: Integrate a function(2)

The user defined function is specified as external in the
argument specifications in the trapezoidal function

Any function taking a double precision as an argument and
returning a double precision number can now be used as an
input argument to the trapezoidal function

Verify that trapeziodal is implemented correctly

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Binary format

A number like π can be represented in ASCII format as 3.14
(4 bytes) or 3.14159E + 00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in files

Binary format (normally) saves space, and input/output is
much faster since we avoid translation between ASCII
characters and the binary repr.

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and Compaq: little endian

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise4: Work with binary data in Fortran 77 (1)

Scientific simulations often involve large data sets and binary
storage of numbers saves space in files

How to write numbers in binary format in Fortran 77:

WRITE(UNIT=olun) array

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise: Work with binary data in Fortran 77 (2)

Create datatrans2.f (from datatrans1.f) such that the input
and output data are in binary format

To test the datatrans2.f we need utilities to create and read
binary files

1 make a small Fortran 77 program that generates n xy-pairs of
data and writes them to a file in binary format (read n from
the command line)

2 make a small Fortarn 77 program that reads xy-pairs from a
binary file and writes them to the screen

With these utiltities you can create input data to datatrans2.f
and view the file produced by datatrans2.f

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise: Work with binary data in Fortran 77 (3)

Modify datatrans2.f program such that the x and y numbers
are stored in one long dynamic array

The storage structure should be x1, y1, x2, y2, ...

Read and write the array to file in binary format using one
READ and one WRITE call

Try to generate a file with a huge number (10 000 000) of
pairs and use the unix time command to test the efficiency of
reading/writing a single array in one READ/WRITE call
compared with reading/writing each number separately

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise 4: Work with binary data in Fortran 75

Do the Fortran 77 version of the exercise first!

How to write numbers in binary format in Fortran 95

WRITE(UNIT=olun, IOSTAT=rstat) array

Modify datatrans1.f90 program such that it works with binary
input and output data (use the Fortran 77 utilities in the
previous exercise to create input file and view output file)

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise 6: Efficiency of dynamic memory allocation(1)

Write this code out in detail as a stand-alone program:

INTEGER, PARAMETER :: nrepetitions = 1000000

INTEGER :: i, n

CHARACTER(LEN=80) :: argv

CALL getarg(1,argv)

n = a2i(argv)

DO i = 1, nrepetitions

! allocate a vector of n double precision numbers

! set second entry to something

1 deallocate the vector

END DO

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise 6: Efficiency of dynamic memory allocation(2)

Write another program where each vector entry is allocated
separately:

INTEGER :: i, j

DOUBLE PRECISION :: sum

DO i = 1, nrepetitions

! allocate each of the double precision

!numbers separately

DO j = 1, n

! allocate a double precision number

! add the value of this new item to sum

! deallocate the double precision number

END DO

END DO

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Exercise : Efficiency of dynamic memory allocation(3)

Measure the CPU time of vector allocation versus allocation
of individual entries:

unix> time myprog1

unix> time myprog2

Adjust the nrepetitions such that the CPU time of the fastest
method is of order 10 seconds

Gunnar Wollan Introductory Fortran Programming

Exercises
Modules

Modules

12 Modules

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Traditional programming

Traditional programming:

subroutines/procedures/functions

data structures = variables, arrays

data are shuffled between functions

Problems with procedural approach

Numerical codes are usually large, resulting in lots of functions
with lots of arrays(large and their dimensions)

Too many visible details

Little correspondence between mathematical abstraction and
computer code

Redesign and reimplementation tend to be expensive

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Introduction to modules

Modules was introduced in Fortran with the Fortran 90
standard

A module can be looked upon as some sort of a class in C++

The module lacks some of the features of the C++ class so
until Fortran 2003 is released we cannot use the OOP
approach

But we can use modules as objects and get something like the
OOP style

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Programming with objects

Programming with objects makes it easier to handle large and
complicated code:

Well-known in computer science/industry

Can group large amounts of data (arrays) as a single variable

Can make different implementation look the same for a user

Not much explored in nummerical computing (until late
1990s)

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Example: programming with matrices

Mathematical problem:

Mattrix-matrix product: C = MB

Matdix-vector product: y = Mx

Points to consider:

What is a matrix

A well defined mathematical quantity, containing a table of
numbers and a set of legal operations

How do we program with matrices?

Do standard arrays in any computer language give good
enough support for matrices?

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

A dense matrix in Fortran 77(1)

Fortran 77 syntax

c234567

integer p, q, r

real*8 M, B, C

dimension(p,q) M

dimension(q,r) B

dimension(p,r) C

real*8 y, x

dimension(p) y

dimension(q) x

C matrix-matrix product: C = M*B

call prodm(M,p,q,B,q,r,C)

C matrix-vector product y = M*x

call prodv(M,p,q,x,y)

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

A dense matrix in Fortran 77(2)

Drawback with this implementation

Array sizes must be explicitly transferred

New routines for different precisions

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Working qith a dense matrix in Fortran 95

DOUBLE PRECISION, DIMENSION(p,q) :: M

DOUBLE PRECISION, DIMENSION(q,r) :: B

DOUBLE PRECISION, DIMENSION(p,r) :: C

DOUBLE PRECISION, DIMENSION(p) :: x

DOUBLE PRECISION, DIMENSION(q) :: y

M(j,k) = 3.14

C = MATMUL(M,b)

y = MATMUL(M,x)

Observe that

We hide information about array sizes

we hide storage structure

the computer code is as compact as the mathematical
notation

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Array declarations in Fortran 95

In Fortran 95 an array is in many ways like a C++ class, but
with less functionality

A Fortran 95 array contains information about the array
structure and the length of each dimension

As a part of the Fortran 95 language, functions exists to
extract the shape and dimension(s) from arrays

This means we no loger have to pass the array sizes as part of
a function call

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

What is this module, class or object

A module is a collection of data structures and operations on
them

It is not a new type of variable, but a TYPE construct is

A module can use other modules so we can create complex
units which are easy to program with

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Extensions to sparse matrices

Matrix for the discretization of −∇2u = f

Only 5n out of n2 entries are nonzero

Store only the nonzero entries’ !

Many iterative solution methods for Au = b can operate on
the nonzeroes only

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

How to store sparse matrices(1)

A =

a1,1 0 0 a1,4 0
0 a2,2 a2,3 0 a2,5

0 a3,2 a3,3 0 0
a4,1 0 0 a4,4 a4,5

0 a5,2 0 a5,5 a5,5

(1)

Working with nonzeroes only is important for efficiency

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

How to store sparse matrices(2)

The nonzeroes can be stacked in a one-dimensional array

Need two extra arrays to tell where a column starts and the
row index of a nonzero

A = (a1, 1, a1, 4, a2, 2, a2, 3, a2, 5, . . .
irow = (1, 3, 6, 8, 11, 14)
jcol = (1, 4, 2, 3, 5, 2, 3, 1, 4, 5.2.4.5)

(2)

⇒ more complicated data structures and hence more
complicated programs

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Sparse matrices in Fortran 77

Code example for y = Mx

integer p, q, nnz

integer irow(p+1), jcol(nnz)

double precision M(nnz), x(q), y(p)

...

call prodvs(M, p, q, nnz, irow, jcol, x, y)

Two major drawbacks:

Explicit transfer of storeage structure (5 args)

Different name for two functions that perform the same task
on two different matrix formats

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Sparse matrix as a Fortran 95 module(1)

MODULE mattypes

TYPE sparse

DOUBLE PRECISION, POINTER :: A(:) ! long vector with nonzero

! matrix entries

INTEGER, POINTER :: irow(:)! indexing array

INTEGER, POINTER :: jcol(:)! indexing array

INTEGER :: m, n ! A is logically

! m times n

INTEGER :: nnz ! number of nonzeroes

END TYPE sparse

END MODULE mattypes

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Sparse matrix as a Fortran 95 module(1)

MODULE matsparse

USE mattypes

TYPE(sparse),PRIVATE :: hidden_sparse

CONTAINS

SUBROUTINE prod(x, z)

DOUBLE PRECISION, POINTER :: x(:), z(:)

...

END SUBROUTINE prod

END MODULE matsparse

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Sparse matrix as a Fortran 95 module(2)

What has been gained?

Users cannot see the sparse matrix data structure

Matrix-vector product syntax remains the same

The usage of sparse and dense matrix is the same

Easy to switch between the two

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

The jungle of matrix formats

When solving PDEs by finite element/difference methods
there are numerous advantageous matrix formats:

dense matrix
banded matrix
tridiagonal matrix
general sparse matrix
structured sparse matrix
diagonal matrix
finite differece stencil as a matrix

The efficiency of numerical algorithms is often strongly
dependend on the matrix storage scheme

Goal: hide the details of the storage schemes

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Objects, modules and types

Module matsparse = object

Details of storage schemes are partially hidden

Extensions in the module for interfaces to matrix operations

Extensions in the module mattypes for specific storage
schemes

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

Bad news

Programming with modules can be a great thing, but it might
be inefficient

Adjusted picture:
When indexing a matrix, one needs to know its data storage
structure because of efficiency

Module based numerics: balance between efficiency and the
use of objects

Gunnar Wollan Introductory Fortran Programming

Modules
A simple module

A simple module

12 Modules

Gunnar Wollan Introductory Fortran Programming

A simple module
Modules and Operator Overloading

A simple module example

We want to avoid the problems which often occurs when we
need to use global variables

We starts out showing the Fortran 77 code for global variables
with an example of a problem using them

Then we show the Fortran 95 module avoiding this particular
problem

Gunnar Wollan Introductory Fortran Programming

A simple module
Modules and Operator Overloading

Modules and common blocks

In Fortran 77 we had to use what is called a common block

This common block is used to give a name to the part of the
memory where we have global variables

INTEGER i, j

REAL x, y

COMMON /ints/ i,j

COMMON /floats/ x, y

One problem here is that the variables in a common block is
position dependent

Gunnar Wollan Introductory Fortran Programming

A simple module
Modules and Operator Overloading

Common blocks

An example of an error in the use of a common block

SUBROUTINE t1

REAL x,y

COMMON /floats/ y, x

PRINT *, y

END SUBROUTINE t1

Here we use the common block floats with the variables x and
y

The problem is that we have put y before x in the common
declaration inside the subroutine

What we are printing out is not the value of y, but that of x

Gunnar Wollan Introductory Fortran Programming

A simple module
Modules and Operator Overloading

Use a module for global variables(1)

To avoid the previous problem we are using a module to
contain the global variables

In a module it is the name of the variable and not the position
that counts

Our global variables in a module:

MODULE global

INTEGER :: i, j

REAL :: x, y

END MODULE global

Gunnar Wollan Introductory Fortran Programming

A simple module
Modules and Operator Overloading

Use a module for global variables(2)

Accessing a module and its varaibles

SUBROUTINE t1

USE global

PRINT *, y

END SUBROUTINE t1

Now we are printing the value of variable y and not x as we
did in the previous Fortran 77 example

This is because we now are using the variable names directly
and not the name of the common block

Gunnar Wollan Introductory Fortran Programming

A simple module
Modules and Operator Overloading

Modules and Operator Overloading

12 Modules

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

Doing arithmetic on derived datatypes

We have a derived datatype:

TYPE mytype

INTEGER :: i

REAL, POINTER :: rvector(:)

DOUBLE PRECISION, POINTER :: darray(:,:)

END TYPE mytype

To be able to perform arithmetic operations on this derived
datatype we need to create a module which does the job

We want to overload the operators +, -, *, /, =

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

Operator overloading(1)

What is operator overloading?

By this we mean that we extends the functionality of the
intrinsic operators +, -, *, /, = to also perform the operations
on other datatypes

How do we do this in Fortran 95?

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

Operator overloading(2)

This is how:

MODULE overload

INTERFACE OPERATOR(+)

TYPE(mytype) FUNCTION add(a,b)

USE typedefs

TYPE(mytype), INTENT(in) :: a

TYPE(mytype), INTENT(in) :: b

END FUNCTION add

END INTERFACE

END MODULE overload

We have now extended the traditional addition functionality
to also incorporate our derived datatype mytype

We extends the other operators in the same way except for
the equal operator

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

Operator overloading(3)

What the do we do to extend the equal operator?

Not so very different than from the others

MODULE overload

INTERFACE ASSIGNMENT(=)

SUBROUTINE equals(a,b)

USE typedefs

TYPE(mytype), INTENT(OUT) :: a

TYPE(mytype), INTENT(IN) :: b

END SUBROUTINE equals

END INTERFACE

END MODULE overload

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

Operator overloading(4)

Some explanations of what we have done

The keywords INTERFACE OPERATOR signal to the compiler
that we want to extend the default operations of the operator
IN the same way we signal to the compiler we want to extend
the default behaviour of the assignment by using the keyword
it INTERFACE ASSIGNMENT
The difference between the assignment and operator
implementation is that the first is implemented using a
subroutine while the others are implemented using a function

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

Implementation of the multiplication operator(1)

The multiplication operator for mytype

FUNCTION multiply(a,b) RESULT(c)

USE typedefs

TYPE(mytype), INTENT(in) :: a

TYPE(mytype), INTENT(in) :: b

TYPE(mytype) :: c

INTEGER :: rstat

ALLOCATE(c%rvector(5),STAT=rstat)

IF(rstat /= 0) THEN

PRINT *, ’Error in allocating x.rvector ’, rstat

END IF

...

It is important to remember that the implementation of the
operators is in a separate file

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

Implementation of the multiplication operator(2)

The multiplication operator for mytype

...

ALLOCATE(c%darray(5,5),STAT=rstat)

IF(rstat /= 0) THEN

PRINT *, ’Error in allocating x.darray ’, rstat

END IF

c%i = a%i * b%i

c%rvector = a%rvector * b%rvector

c%darray = a%darray * b%darray

END FUNCTION multiply

It is important to remember to allocate the memory space for
the result of the multiplication. Unless you do this the
program will crash

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

How we implement the assignment operator

The assigmnent operator for mytype

SUBROUTINE equals(a,b)

USE typedefs

TYPE(mytype), INTENT(OUT) :: a

TYPE(mytype), INTENT(IN) :: b

a%i = b%i

a%rvector = b%rvector

a%darray = b%darray

END SUBROUTINE equals

It is important to remember that the implementation of the
assignment is in a separate file

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

What have we really done in these two examples(1)

The multiply function takes two input arguments and returns
a variable of mytype

To avoid mistakes of changing the value of any of the two
arguments both have the attibute INTENT(IN)

In C++ we would typically use the keyword const as an
attribute to the argument

The default for attribute for arguments to functions and
subroutines in Fortran is INTENT(INOUT) which allowes us
to modify the argument

Fortran has the nice feature that we can multiply an array
with another provided they have the same shape and size. We
therefore does not need to go through one or more loops to
perform the multiplication

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

What have we really done in these two examples(2)

The assigment is implemented using a subroutine

Like in the multiplicaion we use the INTENT(IN) attribute to
the second argument

To the first argument we use the INTENT(OUT) attribute to
signal that this argument is for the return of a value only

Gunnar Wollan Introductory Fortran Programming

Modules and Operator Overloading

Gunnar Wollan Introductory Fortran Programming

	Motivation
	Motivation
	About Fortran 77 and 95
	About Fortran 77 and 95
	Intro to Fortran 77 programming
	Intro to Fortran 77 programming
	Intro to Fortran 95 programming
	Intro to Fortran 95 programming
	Compiling and linking Fortran programs
	Compiling and linking Fortran 95 programs
	Manipulate data files
	Manipulate data files
	File handling in Fortran
	File handling in Fortran
	Arrays and loops
	Arrays and loops
	Subroutines and functions in Fortran
	Subroutines and functions in Fortran
	Pointers in Fortran 95
	Pointers in Fortran 95
	Exercisex
	Exercises
	Modules
	Modules
	A simple module
	A simple module
	Modules and Operator Overloading
	Modules and Operator Overloading

