Introduction to Deterministic Chaos
Xaod

Branislav K. Nikoli¢

Department of Physics & Astronomy, University of Delaware, Newark, DE 19716, U.S.A.
PHYS 460/660: Computational Methods of Physics
http://wiki.physics.udel.edu/phys660

i Minh P
IS ARG Corrpuilmtors Rty of s
E:--.-

e m | emam—— Pt A
e il ]

PHYS 460/660: Computational Methods of Physics Introduction to deterministic chaos



Chaos vs. Rahdomness

Do not confuse chaotic with random temporal dynamics:

Random:

{ irreproducible and unpredictable

Chaotic (use characteristics below as definition):

Qirregular in time Si’r is not even the superposition of periodic
motions - it is really aperiodic) for a simple system containing only
few degrees of freedom

[ deterministic - same initial conditions lead to same final state -
bu’rd’rhe final state is very different for small changes to initial
conditions

d difficult or impossible fo make long-term prediction!

1 complex, but ordered, in phase space: it is associated with a
fractal structure

PHYS 460/660: Computational Methods of Physics Introduction to deterministic chaos



Clockwork (Newton) vs.

Chaotic (Poincaré) Universe

L Suppose the Universe is made of particles of matter interacting according to
Newton laws — this is just a dynamical system governed by a (very large though)
set of differential equations.

Given the starting positions and velocities of all particles, there is a unique
outcome — P. Laplace’s Clockwork Universe (XVIII Century)
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Brief Chaotic History: 1892 - Poincaré
invented Hamiltonian or Conservative Chaos

Henri Poincare

Birth of Chaos Theory

Iin 1887 the King of Sweden offered a
prize to the person who could answer the
question ™ *

Poincare, a French mathematician, won
the prize with his work on the
problem

He considered, for example, just the Sun,
Earth and Moon orbiting in a plane under
their mutual gravitational attractions

Like the pendulum, this system has some
MNewton solved the 2-body problem

Introducing a Poincare section, he saw
that must occur

These would then give rise to and
unpredictability I Poincaré showed that the 3-body

problem is essentially “unsolvable’
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Footnote: Did Poincaré get the money?

QJules Henri Poincaré was dubbed by E. T. Bell as the last universalist — a man who is at ease in all
branches of mathematics, both pure and applied — Poincaré was one of these rare savants who was able
to make many major contributions to such diverse fields as analysis, algebra, topology, astronomy, and
theoretical physics.

QWhile Poincaré did not succeed in giving a complete solution, his work was so impressive that he was
awarded the prize anyway. The distinguished Weierstrass, who was one of the judges, said, "this work
cannot indeed be considered as furnishing the complete solution of the question proposed, but that it is
nevertheless of such importance that /ts publication will inaugurate a new era in the history of celestial
mechanics." (a lively account of this event is given in Newton's Clock: Chaos in Solar System)

OTo show how visionary Poincaré was, it is perhaps best to read his description of the hallmark
of chaos - sensitive dependence on initial conditions:

"If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could
predict exactly the situation of that same universe at a succeeding moment. but even if it were the case
that the natural laws had no longer any secret for us, we could still only know the initial situation
approximately. If that enabled us to predict the succeeding situation with the same approximation, that
is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws.
But it is not always so; it may happen that small differences in the initial conditions produce very
great ones in the final phenomena. A small error in the former will produce an enormous error in the
latter. Prediction becomes impossible, and we have the fortuitous phenomenon. - in a 1903 essay
"Science and Method"
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Brief Chaotic History: 1963 Lorentz Discovers
Dissipative Chaos in Numerical Solution to ODE

- In 1963 Lorenz was trying to
improve

Using a computer, he discovered
the first chaotic attractor

Three variables (x, y, z) define , B 10 ('T L 1,‘)

Changing in time, these variables
give a trajectory in a 3D space L 28 P— iz

- From all starts, trajectories settle
onto a strange, chaotic attractor

xy—(8/3)z

Right and left flips occur as
randomly as

Prediction is impossible
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Chaos in the Brave New World of Computers

Poincaré created an original method to understand chaotic systems,
and discovered their very complicated time evolution, but:
"It is so complicated that I cannot even draw the figure."

Lorenz Chaos

This is a system of equati
dissipation

Like the damped pendulum, motions settle, but
here to the shown

-

Since the solution is chaotic, it cannot be written
down in any formula

in a mathematical sense the problem is

All the computer does is solve the equations in an
[l
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Example: Damped Driven Pendulum

O Initial position (i.e., angle) is at 1, 1.001, and 1.000001 rad:
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Tuning the driving force and ftransition to chaos

[ Not every dumpled driven pendulum is chaotic — depends on the
driving force: f = 1,1.07,1.15,1.35, 1.45
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Can Chaos Be Exploited?

Lagrange points and zero-velocity  Dhistnibution of asteroiwds near the
curves (mass ratio = Earth-Moon)  orbat of Jupter

Using chaos toda

The of
a chaotic state often
allow it to be easily

Jupiter

To get a e _an
spinning USING CHAOS FOR SPACE FLIGHT

quickly, either way, Consider a rotating reference frame 1n which the Sun and Earth appear stalionary

- - - - \ Spacocrall can remain stationary at o s, named afler Lagrange

it is best to keep it in R R D S

omis Ly . Ls and Ly lie on the i o are equi librium st

its chautic st e Pomis | 1 n the Sun-Earth axis and are unstable equilibrium state

at The SOHC spacecrall w

Pomnts Ly and Ly are the triangular points, and in the solar svstem most are stabile

% maintained n a hale orbit around Ly 1 baenve the sun

Chaos is used by

Some asterolds cluster around the triangular points in the Sun-Jupiter svatem

to GENESIS uses a chaotic orbit between L and L; . Almost coasting, It uses little fuel!
minimise the Tuel he Japancse HITEN rescue mission used a chaotic Enrth-Meen trajecton
needed for a mission @« USING CHAOS TO SAVE THE EARTH

Long age. an asteroid crashed into the Earth and kKilled all the dinosaurs

It could happen again. and destroy all hife on Ewrth

An asterosd on a collmwon course 15 most easilv deflected whale in a chaotic region
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Examples of Chaos in Physical Systems

Chaos is seen in many physical systems:
- fluid dynamics (weather patterns) and turbulence
- some chemical reactions
- Lasers
- electronic circuits
- particle accelerators
- plasma (such as in fusion reactors and space)

Conditions necessary for chaos:
- system has 3 independent dynamical variables
- the equations of motion are non-linear
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Concepts in Dynamical System Theory

[ A dynamical system is defined as a deterministic mathematical
prescription for evolving the state of a system forward in time.

O Example: A system of N first-order and autonomous ODE:

dx, \
=F(X,X,,..., X
Y (X, )
ddX F(X,X,,...,X) | set of points (X, X,,..., X, ) 1s phase space
t —
[ X, (1), X, (1), ..., %, (t)] is trajectory or flow
dx
dtN =F(X,%,,...,X.)

N >3 + nonlinearity = CHAOS becomes possible !
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Why Nonlinearity and at Least 3D Phase Space?

o

| \\\\\\\\\ .-.:Wp: t

l

There Is no crossing in phase space: so how
do complex chaotic motions arise?

The answer is by divergence, folding and
mixing (possible with and ) @
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Ordinary Differential Equation for

Damped Driven Pendulum
A Nonlinear ODE of the second order:

2
a0 | Cd&’ -mg sin 6 = Acos(apt + ¢)

ml
dt* dt

d First step for computational approach — convert ODE
into a dimensionless form:

dd:) O (;f Fsin @ = f, cos(awpt + @)
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How to Prepare Equations in Dimensionless

Form Before Putting Them Into the Computer

1. Introduce dimensionless space and time (X'.t") coordinates via:
P )

X =LX’ t=Tt
2. Switch to dimensionless velocity and acceleration:
o diX T L
% — L X —=—f (LX’,— X’,Tt’;parametersj
dt T dt’ dt L T

and choose L and T (natural length and time scale of the system),
so that parameter dependence is simplest (i.e., wherever possible
the prefactors should be 1).

2 2 T=yl/g ..
d f:—T—gsiné’ — @ +smfd=0
dt’ L
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Where is Nonlinearity and 2Three Dynamical

Variables in Damped Driven Pendulum?

do + a0 +sin @ = f, cos(wpt)

dt dt

QNon-linear term: S1n @

QThree dynamic variables: @, &,

\ [ dx .
_dé L= f,cos X, —sin X, — gX,
X, = —0— dt
dt

dx,

X, =60 = 1 = X,
dt
X, = ol dx,

= o

| dt 0

Q This system is chaotic only for certain values of (, foa g
O In the examples we use q=1/2,a, =2/3, f, €(1,2)
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Routes to Chaos: Period Doubling
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[ To watch the onset of chaos (as £, is

increased) we look at the motion of the
system in phase space, once transients
die away

d Pay close attention to the period doubling
that precedes the onset of chaos.
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The "Sound” of Chaos
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Deterministic Chaos Look Like Random Motion In

Real Space — Order Emerges in Phase Space

[ Strange attractors in Dissipative Chaos

0 K[olmogorov]A[rnold]M[oser] torus of regular motion
becomes deconstructed in Conservative Chaos which is
then characterized by chaotic bands and reqgular islands

3 Poincaré sections probe fractals structures in phase space
generated by dissipative or conservative chaos

d Lyapunov exponents and Kolmogorov entropy

J Fourier spectrum and autocorrelation functions
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Poincaré Section

Pensaboecton . . Xpew =F (X))

To examine chaos, Poincare
used the idea of a section (

This cuts across the phase-
space orbits

T s =T 545 Ml
phasn GHICH

The original system flows in _i
continuous time “ Two-demansiona Xnew = F (X5 §)

Poindir s §eCioen ¥
T "?_ - J-J.u-ﬂ-' = G {"r'l .r ::l

- -—

On the section, we observe
steps in

The flow is replaced by what
is called an

The dimension of the phase- B
space is reduced by one @

W
L
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Examples of Poincaré Section
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Poincaré Section of Damped Driven Pendulum: A Slice

of the 3D Phase Space at a Fixed Value of o t mod2x

q=0.25

% f=148
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Attractors in Phase Space

1 The surfaces in phase space which the pendulum
follows, after transient motion decays, are
called attractors.

L Non-Chaotic Attractor Examples:

—for a damped undriven pendulum, attractor is
just a point at 6=»=0 (0D in 2D phase space).

—for an undamped pendulum, attractor is a
curve (1D attractor).
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Fractal Nature of Strange Attractors
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LChaotic attractors of dissipative systems. _ s DI
are strange — fractals with non-integer - , ’ TN
dimension (2«<dim<3 for pendulum) and zero - TR .
volume. g = \ WA
QThe fine structure is quite complex and = ) % ) \!
similar to the gross structure - fractals = S pEL Ok
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magniinngglass_ T IO A A T O el oy oy
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World of Fractals in Pictures

HA fractal is an object or quantity that displays self-similarity on all scales - the
object need not exhibit exactly the same structure at all scales, but the same "type"
of structures must appear on all scales.

QTheir surface area is large and depends on the resolution (accuracy of measurement).

Gosper: Q @ Q @ @ Barnsiey:
w TS 3
3 Frads
il A A B B e

L The prototypical example for a fractal in nature is the length of a coastline measured
with different length rulers. The shorter the ruler, the longer the length measured, a
paradox known as the coastline paradox.
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How Do We Define Dimension
of a Geometrical Object?

AT g

it =
TN@)=2" O
” %7///4 A

7 /’/Z__N(g) _

: 2
e { &
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Non-Trivial Examples: Cantor Set and Koch Curve

d The Cantor set is produced as follows: N ¢
1 1
2 173
= - - - 4 1/9
- = L - - — 8 1/27
n : _ ( 1 j ~In2/In3 In2
2" boxesofsize e=| — | => N(g)=¢ =D, =—=0.576<1
3 In3
i
o ﬂ% Q Koch curve
] | e
Z %7 In 4
7 Sl D, ~Tn3
% % . %;{/ gﬁ%;{’ n
7 % % %%
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Fat Fractals vs. Thin Fractals

HFat Cantor set: we use the same procedure
T but vary the sizes of the pieces removed - first,
1/4

remove the middle 1/4 of the unit interval —

from each of the remaining two pieces remove an

interval of length 1/16 = 1/42 — from each of

/L the remaining four pieces remove an interval of
1/16 length 1/64 = 1/43, and so on ...

HdMandelbrot's conjecture: Radial
AL cross-sections of Saturn's rings
1/64 are fat Cantor sets:

dFat fractals have non-zero volume and dimension
—a measurable property of fat fractals is that their
observed volume depends on the resolution in such a
way that deviation from the exact volume decreases
slowly and proportionally to a power of the resolution

V(e)-V ~&°

o = fat fractal exponent

QStandard thin fractals have vanishing volume V(&) ='N(g) ~ ™™ (¢ 1)
(they are not space filling) and non-integer dimension D, <d, but

their observed surface may tend to infinity.
PHYS 460/660: Computational Methods of Physics Introduction to deterministic chaos



Lyapunov Exponents

O The fractional dimension of a chaotic attractor is a result of the
extreme sensitivity to initial conditions.

[ Lyapunov exponents are a measure of the average rate of divergence of
heighboring trajectories on an attractor.

0 Consider a small sphere in phase space containing initial conditions —
after a short time the sphere will evolve into an ellipsoid:

\ 4

> N
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Connection Between Lyapunov Exponents and

Fractal Dimension of Strange Attractors

[ The average rate of expansion along the principle axes are
the Lyapunov exponents

O Chaos implies that at least one Lyapunov exponents is > Ol

d For damped driven pendulum: Z& =—(Q (sum of Lyapunov
exponents is nhegative damping icoefficient)

—no contraction or expansion along # direction, so that
exponent is zero

—it can be shown that the dimension of the attractor is:
D, =2 -4, / A,
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Lyapunov Exponents for

Dissipative vs. Conservative Chaos

 For Hamiltonian systems, the Lyapunov exponents exist in additive
inverse pairs, while one of them is always O.

0 In dissipative systems in an arbitrary n-dimensional phase space, there
must always be one Lyapunov exponent equal to O, since a perturbation
along the path results in no divergence.

—>(-, - - - ...) fixed point (0-D)
—(0, -, -, -, ...) limit cycle (1-D)
— (0,0, -, -, ...) 2-torus (2-D)

— (0, 0, O -, ...) 3-torus, etc. (3-D, etc.)
—>(+, 0, -, -, ...) strange (chaotic) (2+-D)
— (+, +, 0, -, ...) hyperchaos, etc. (3+-D)
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Kolmogorov Entropy

O Interpretation: Measures amount of information required to specify
trajectory of a system in the phase space.

d Alternatively Interpretation: Measures rate at which initial information
about the state of the system in phase space is washed out!

Regular Chaotic Random
X1t 4_,2- x1 X4
"‘— "0..
A
>t >t >t
N =1=>K=InNy, =0 N =€ =K=~InNy, =1 Ny —00=>K —00
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Computer Simulations of Chaos in

Damped Driven Pendulum

OFrom differential to difference equations - use Euler-Cromer method:

e

N

%)2—92 sin@—Qe+ f sint “hn za%—At(stinQ]—l—qa%—fD sint)
d—e_a) = 0n+1 :Hn +Ata’¥1+l
dt ) 60 :7—22., a‘b :O

Search the phase space to find aperiodic motion confined to strange
attractors which fill densely Poicaré sections

LdCompute autocorrelation function to see if it drops to zero, while power
spectrum (which is its Fourier transform) exhibits continuum of frequencies

X(w)= [ e“xt)dt = P(w) =| x(a) [

J0

C(z) = [ [(x(®) =) (x(t+7)—X)]dt
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Attractor of Damped (Undriven) Pendulum

Crampad Drven Fandulum

o= 4, = =1

L
!
[ - I - T
moom o=
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Attractor of Damped Driven Pendulum in

the Non-Chaotic Regime
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Poincaré Sections Signifying Transition to

Transition To Chaos via Period Doubling Route
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Power Spectrum of in Transition to Chaos

Power spectrum for damped driven pendulum

g= 34 2= ¥ (=03 .
af o Fower spectrum for damped driven pendulum

o= Wd, SF= W2, i"r.= 2.4

IE | ‘: | [ |Ii || :l b
) ! O I : A _III "',
| I| 3 3 i‘ ' [ J‘..II I-‘. “I I| l ‘ |I
I: | ! ' l' [ :II | . - A II \ I: r‘
<l | I'] A \' I\f'f WY \;i'l Vo |I | |I \
{ | ’ II lll ;I } :'. | ||I'|
] '.I [ ‘ ! ]'.z |4 ! \ ! Il |
I | NERFAVETN
S ! | ) ) . ) i 1 7 Y | i
] 1 z 3 a § ¥ i Y ]I|' Vo
Angular freguency -6 o i ; I .: I =

Angular frequercy
Power spectrum for damped driven pendulum

- Period-2: Significant power appears at 1/2,
| : 3/2, ..., of the driving force frequency

z [ ||J JI\ | II |

7 ?v"/-,gll Ep'a m"l'.llf Ili_.';“" ||| l'lll;'ﬁ"a!lll || \ Il|| lll n |I \ i y
o I R l\'.il]!] i f“;l .|| | Period-4: There is power at 1/4, 3/4, ..,
=1 l I"I.r Illl.zll E"; II" !I .'"p"! II o
, : 'V of the driving force frequency

Angular freguency
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Attractor of Damped Driven Pendulum

in Transition to Chaos

Dargad Dnven Pendulum Carmped Criven Faduum
T OF 3, = EE G=24

1 | I | I | 1} 1 l b
1 1 O I | i | ] 11 Y11 i 1
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Power Spectrum in the Chaotic Regime

Fower spactrum for damped diven pendulum

o= 34 7= 31, fn= 33

When the system is
chaotic, there is still
significant power at the
AN drive frequency but

1t RS VAN there are no other sharp
spikes in the spectrum.

Log Power

1] 1 . 3 4 &

& ngular fregueancy
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Bifurcation Diagram for

Damped Driven Pendulum

Bifurcation Diagram for tha Damped Criven Pendulum

g= 4, 7= 32

3.2

1.8

Eifurcation Diagram for the Damped Driven Pendu lum
®oo g= 14, 3= 37
1.6
17 ;
1.0 1.5 0
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Feigenbaum Number as an Example of

Surprising Order in Chaos

O The ratio of spacings between consecutive values of p at
the bifurcations approaches a universal constant - the
Feigenbaum number

S = lim Fe =P 0.4669

= |:n+1 - F

n

F . :value at which transition to period-2" takes place

d This is universal to all differential equations (within
certain limits) and applies to the pendulum. By using the
first few bifurcation points, one can predict the onset
of chaos.

PHYS 460/660: Computational Methods of Physics Introduction to deterministic chaos



Diagnostic Tools for Conservative Chaos

in “Two balls in 1D with gravity” Problem
dThe dynamical system is chaotic if we find that:

1. Poincare section contains areas 2. Autocorrelation 3. Power spectrum
which are densely filled with function decays displays wide continuum
trajectory intersection points fast to zero
15 OO ool el ol - AR ock o '[E::'-
* - e ki . MIM‘NMN\MIIN\WV\MM\NWNW 1 0.03 " Power Spectrum
L e | i ] ooz
(( — ;s S . 0.02}
: LU . ] oo m,=1, m,=9
0.01f
0.005F
g | 2 o3 4 5
S T S S 0 20 40 60 80 100 Power spectrum for my = 1.0, ms = 0.0
e time(x)

Autocorrelation function for z2(t) (a) my = 1.0, mg =
L0 (b) my = 1.0,m; =2.0 (c) m; = 1.0, my = 0.0
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Summary Dissipative vs. Conservative and

Permanent vs. Transient Chaos

UPermanent:
trajectory in phase
space starting from
arbitrary initial
conditions ends up on
strange attractor
(Cantor filaments) as
a bounded region of
phase space where
trajectories appear
to skip around
randomly.

HTransient: typical
initial conditions from
the fractal basin
boundary (Cantor
filaments) result in
finite time chaotic
behavior lasts for
finite time while the
system is approaching
attractors

OPermanent: Hierarchically
nested pattern of chaotic
bands (fat fractals) and
regular island - there are no
attractors (due to

conservation of energy and
phase space volume) - instead [ .~
the appearance of regular or £z
chaotic motion strongly
depends on the initial
conditions and the total
energy.

OTransient: Chaotic [, e

. \__/I = -._:_‘:;; =
(j\CJ ;'_;::_'.;.'_'___..
4 = 155

scattering where
motion starting fr‘orﬁ“
specific initial
conditions (Cantor
clouds) is irregular in a
finite region of space in
which significant forces
act.

-
- !

i
agy
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Do Computers Simulations of Chaos Make Any Sense?

PHYS 460/660: Computational Methods of Physics

Figure 1.15 After a relatively
small number of iterates, two
trajectories, one computed
using single precision, the
other computed using double
precision, both originating
from the same initial
condition, are far apart. (This
figure courtesy of Y. Du.)

Shadowing Theorem: Numerically
computed chaotic Although a trajectory
diverges exponentially from the true
trajectory with the same initial
coordinates, there exists an errorless
trajectory with a slightly different initial
condition that stays near ("shadows") the
numerically computed one. Therefore, the
fractal structure of chaotic trajectories
seen in computer maps is real.

True trajectory
from x,

Noisy
trajectory

Initial from x

condition x;

Slightly

different
initial condition xj,

f

True trajectory
from x§,
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