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Chaos vs. Randomness

Do not confuse chaotic

 

with random

 

temporal dynamics:

Random:

 irreproducible and unpredictable

Chaotic (use characteristics below as definition):

 irregular in time

 

(it is not even the superposition of periodic 
motions –

 

it is really aperiodic) for a simple system containing only 
few degrees of freedom

 deterministic -

 

same initial conditions lead to same final state -

 
but the final state is very different for small changes to initial 
conditions

 difficult or impossible

 

to make long-term prediction!
 complex, but ordered, in phase space: it is associated with a 

fractal structure
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Clockwork (Newton) vs. 
Chaotic (Poincaré) Universe

Suppose the Universe is made of particles of matter interacting according to 
Newton laws

 

→

 

this is just a dynamical system governed by a (very large though) 
set of differential equations.

Given the starting positions and velocities of all particles, there is a unique 
outcome

 

→ P. Laplace’s

 

Clockwork Universe

 

(XVIII Century)!
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Brief Chaotic History: 1892 -
 

Poincaré
 invented Hamiltonian or Conservative Chaos
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Footnote: Did Poincaré
 

get the money?
Jules Henri Poincaré

 

was dubbed by E. T. Bell as the last universalist

 

— a man who is at ease in all 
branches of mathematics, both pure and applied — Poincaré

 

was one of these rare savants who was able 
to make many major contributions to such diverse fields as analysis, algebra, topology, astronomy, and 
theoretical physics.

While Poincaré

 

did not succeed in giving a complete solution, his work was so impressive that he was 
awarded the prize anyway. The distinguished Weierstrass, who was one of the judges, said, “this work 
cannot indeed be considered as furnishing the complete solution of the question proposed, but that it is 
nevertheless of such importance that its publication will inaugurate a new era in the history of celestial 
mechanics.”

 

(a lively account of this event is given in Newton's Clock: Chaos in Solar System) 

To show how visionary Poincaré

 

was, it is perhaps best to read his description of

 

the hallmark 
of chaos -

 

sensitive dependence on initial conditions:
“If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could 
predict exactly the situation of that same universe at a succeeding moment. but even if it were the case 
that the natural laws had no longer any secret for us, we could still only know the initial situation 
approximately. If that enabled us to predict the succeeding situation with the same approximation, that 
is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. 
But it is not always so; it may happen that small differences in the initial conditions produce very 
great ones in the final phenomena. A small error in the former will produce an enormous error in the 
latter. Prediction becomes impossible, and we have the fortuitous phenomenon. -

 

in a 1903 essay 
"Science and Method" 
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Brief Chaotic History: 1963 Lorentz Discovers 
Dissipative Chaos in Numerical Solution to ODE
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Chaos in the Brave New World of Computers

Poincaré

 

created an original method to understand chaotic systems, 
and discovered their very complicated time evolution,

 

but:
"It is so complicated that I cannot even draw the figure." 
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Example: Damped Driven Pendulum


 
Initial position (i.e., angle) is at 1, 1.001, and 1.000001 rad:
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Tuning the driving force and transition to chaos


 

Not every dumpled

 

driven pendulum is chaotic →

 

depends on the 
driving force:

 

f = 1, 1.07, 1.15, 1.35, 1.45
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Can Chaos Be Exploited?
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Examples of Chaos in Physical Systems

Chaos is seen in many physical systems:
–

 
fluid dynamics (weather patterns) and turbulence

–
 

some chemical reactions
–

 
Lasers

–
 

electronic circuits
–

 
particle accelerators

–
 

plasma (such as in fusion reactors and space)

Conditions necessary for chaos:
–

 
system has 3 independent dynamical variables

–
 

the equations of motion are non-linear
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Concepts in Dynamical System Theory


 

A dynamical system is defined as a deterministic mathematical 
prescription for evolving the state of a system forward in time.



 

Example: A system of N first-order and autonomous ODE:

 

1
1 2

2
1 21 2

1 2

1 2

( , , , )

set of points ( , , , ) is phase space( , , , )
( ), ( ), , ( ) is trajectory or flow

( , , , )

n

nn

n

N
n

dx F x x x
dt
dx x x xF x x x
dt

x t x t x t

dx F x x x
dt
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
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3 nonlinearity CHAOS becomes possible !N   
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Why Nonlinearity and at Least 3D Phase Space?
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Ordinary Differential Equation for  
Damped Driven Pendulum

Nonlinear ODE of the second order:

 First step for computational approach → convert ODE 
into a dimensionless

 
form:

2

2 sin cos( )D
d dml c mg A t
dt dt
       

0sin cos( )D
d dq f t
dt dt
       
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How to Prepare Equations in Dimensionless 
Form Before Putting Them Into the Computer

x Lx

1.
 

Introduce dimensionless space and time             coordinates via:

t Tt

( , )x t 

2.
 

Switch to dimensionless velocity and acceleration:

dx L dx
dt T dt






2 2

2 , , ;parametersd x T Lf Lx x Tt
dt L T

        


and choose L and T
 

(natural length and time scale of the system), 
so that parameter dependence is simplest (i.e., wherever possible 
the prefactors

 
should be 1). 

Example:
2 2

2 sin sin 0
T L gd T g

dt L
   



     


 
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Where is Nonlinearity and ≥Three  Dynamical 
Variables in Damped Driven Pendulum?



 

This system is chaotic

 

only

 

for certain values of


 

In the examples we use

1
0 3 2 1

1

2
2 1

3
3

c o s s in

D

D

d x f x x q xdx d td t d xx x
d t

x t d x
d t








      
    
   

 

0sin cos( )D
d dq f t
dt dt
     

Non-linear term: sin
Three dynamic variables: , , t 

0, , Dq f 
01 2, 2 3, (1,2)Dq f  
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07.10 f

15.10 f



 

To watch the onset of chaos (as f0

 

is 
increased) we look at the motion of the 
system in

 

phase space, once transients 
die away



 

Pay close attention to the period doubling 
that precedes the onset of chaos.

Routes to Chaos: Period Doubling
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f0
 

= 1.35

f0
 

= 1.48

f0
 

= 1.45 f0
 

= 1.47

f0
 

= 1.50

The “Sound”
 

of Chaos
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Deterministic Chaos Look Like Random Motion In 
Real Space → Order Emerges in Phase Space

 Strange attractors in
 

Dissipative Chaos

 K[olmogorov]A[rnold]M[oser] torus of regular motion 
becomes deconstructed in

 
Conservative Chaos which is 

then characterized by chaotic bands and regular islands

 Poincaré
 

sections probe fractals structures in phase space 
generated by dissipative or conservative chaos

 Lyapunov
 

exponents and Kolmogorov
 

entropy

 Fourier spectrum and autocorrelation functions
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Poincaré
 

Section
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Examples of Poincaré
 

Section

1 ( )n P nP f P 
Poincare Map:

 

Continuous time evolution is replace by a discrete map
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f0
 

= 1.07

f0
 

= 1.48

f0
 

= 1.50

f0
 

= 1.15

Poincaré
 

Section of Damped Driven Pendulum: A Slice 
of the 3D Phase Space at a Fixed Value of mod 2Dt 

q = 0.25
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Attractors in Phase Space

The surfaces in phase space which the pendulum 
follows, after transient motion decays, are 
called attractors.

Non-Chaotic Attractor Examples:
→for a damped undriven

 
pendulum, attractor is 

just a point at =0 (0D in 2D phase space).
→for an undamped

 
pendulum, attractor is a 

curve (1D attractor).
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Fractal Nature of Strange Attractors

Chaotic attractors of dissipative systems 
are

 

strange →

 

fractals with non-integer 
dimension (2<dim<3 for pendulum) and zero 
volume.
The fine structure is quite complex and 
similar to the gross structure –

 

fractals 
reveal

 

self-similarity

 

when viewed by a 
magnifying glass.
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World of Fractals in Pictures
A fractal is an object or quantity that displays

 

self-similarity

 

on all scales

 

- the 
object need not exhibit exactly the same structure at all scales, but the same "type" 
of structures must appear on all scales.

Their

 

surface area is large

 

and depends on the resolution (accuracy of measurement).

The prototypical example for a fractal in nature is the length of a coastline measured 
with different length rulers. The shorter the ruler, the longer the length measured, a 
paradox

 

known as the coastline paradox. 

Gosper:

Koch:

box:

Sierpinski:

Barnsley:

Mandelbrot:
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How Do We Define Dimension 
of a Geometrical Object?

( ) 2N  

2( ) AN 




( ) lN 


0
0

ln ( )( ) , 1
ln1

D NN D   


   
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Non-Trivial Examples: Cantor Set and Koch Curve
 The Cantor set is produced as follows: N      

1       1

2     1/3

4     1/9

8    1/27
ln 2 ln3

0
1 ln 22 boxes of size = ( ) 0.576 1
3 ln 3

n
n N D           

 

0
ln 4
ln 3

D 

 Koch curve
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Mandelbrot’s conjecture: Radial 
cross-sections of Saturn's rings 
are fat Cantor sets:

Fat Fractals vs. Thin Fractals
Fat Cantor set: we use the same procedure 
but vary the sizes of the pieces removed -

 

first, 
remove the middle 1/4 of the unit interval →

 
from each of the remaining two pieces remove an 
interval of length 1/16 = 1/42 → from each of 
the remaining four pieces remove an interval of 
length 1/64 = 1/43, and so on …

( )
fat fractal exponent
V V  







Fat fractals have non-zero volume and dimension              
→a measurable property of fat fractals is that their 
observed volume depends on the resolution in such a 
way that deviation from the exact volume decreases 
slowly and proportionally to a power of the resolution 

Standard thin fractals have vanishing volume                    
(they are not space filling) and non-integer dimension             , but 
their observed surface may tend to infinity.

0( ) ( ) ( 1)d DdV N      
0D d
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Lyapunov
 

Exponents


 

The fractional dimension of a chaotic attractor is a result of the

 
extreme sensitivity to initial conditions.



 

Lyapunov

 

exponents

 

are a measure of the average rate of divergence of 
neighboring trajectories on an attractor.



 

Consider a small sphere in phase space containing initial conditions →

 
after a short time the sphere will evolve into an ellipsoid:

 
 

e2t


 

e1t
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Connection Between Lyapunov
 

Exponents and 
Fractal Dimension of Strange Attractors

 The average rate of expansion along the principle axes are 
the

 
Lyapunov

 
exponents

 Chaos implies that
 

at least one Lyapunov
 

exponents is > 0!

 For damped driven pendulum:
 

(sum of Lyapunov
 exponents is negative damping  coefficient)

→no contraction or expansion along t direction, so that 
exponent is zero

→it
 

can be shown that the dimension of the attractor is:

0 1 22D   

i
i

q  
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

 

For Hamiltonian systems, the Lyapunov

 

exponents exist in additive 
inverse pairs, while one of them  is always 0.



 

In dissipative systems in an arbitrary n-dimensional phase space, there 
must always be one Lyapunov

 

exponent equal to 0, since a perturbation 
along the path results in no divergence. 

(-,  -,  -,  -,  ...)  fixed point  (0-D)
(0,  -,  -,  -,  ...)  limit cycle  (1-D)
(0,0,  -,  -,  ...)  2-torus  (2-D)
(0,  0,  0,  -,  ...)  3-torus, etc.  (3-D, etc.)
( ,  0,  -,  -,  ...)  strange (chaotic)  (2+-D)





 

( ,  ,  0,  -,  ...)  hyperchaos, etc.  (3+-D)  

Lyapunov
 

Exponents for 
Dissipative vs. Conservative Chaos
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Kolmogorov
 

Entropy


 

Interpretation:

 

Measures amount of information required to specify 
trajectory of a system in the phase space.



 

Alternatively Interpretation:

 

Measures rate at which initial information 
about the state of the system in phase space is washed out! 


L

1 ln 0cell cellN K N   

Regular Chaotic Random

lncell cellN e K N     cellN K 

x

t tt

x x
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Computer Simulations of Chaos in 
Damped Driven Pendulum

 2
2 1

1 1

0 0

sin sinsin sin

, 0
2

n

n n n n D
D

n n

d t q f tq f t
dt t
d
dt

     
  

   



 


              
 
   


Search the phase space to find aperiodic

 

motion confined to strange 
attractors which fill densely Poicaré

 

sections

Compute autocorrelation function to see if it drops to zero, while power 
spectrum (which is its Fourier transform) exhibits continuum of frequencies

 

2

0

0

( ) ( ) ( ) | ( ) |

( ) ( ( ) ) ( ( ) )

i tx e x t dt P x

C x t x x t x dt

  

 





  

    




From differential to difference equations –

 

use Euler-Cromer method:
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Attractor of Damped (Undriven) Pendulum
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Attractor of Damped Driven Pendulum in 
the Non-Chaotic Regime
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Poincaré
 

Sections Signifying Transition to 
Transition To Chaos via Period Doubling Route
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Power Spectrum of in Transition to Chaos

Period-2:

 

Significant power appears at 1/2, 
3/2, …, of the driving force frequency

Period-4:

 

There is power at 1/4, 3/4, …, 

of the driving force frequency
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Attractor of Damped Driven Pendulum 
in Transition to Chaos
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Power Spectrum in the Chaotic Regime

When the system is 
chaotic, there is still 
significant power at the 
drive frequency but 
there are no other sharp 
spikes in the spectrum. 
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Bifurcation Diagram for 
Damped Driven Pendulum



Introduction to deterministic chaosPHYS 460/660: Computational Methods of Physics

Feigenbaum
 

Number as an Example of 
Surprising Order in Chaos

 The ratio of spacings
 

between consecutive values of 
 

at 
the bifurcations approaches a universal constant

 
–

 
the 

Feigenbaum
 

number

 This is universal to all differential equations (within 
certain limits) and applies to the pendulum. By using the 
first few bifurcation points, one can predict the onset 
of chaos.

1

1

lim 0 .4 6 6 9n n

n
n n

F F
F F

 

 



 


n: value at which transition to period-2 takes placenF
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Diagnostic Tools for Conservative Chaos 
in “Two balls in 1D with gravity”

 
Problem

The dynamical system is chaotic if we find that:
1.

 

Poincare section contains areas 
which are densely filled with 
trajectory intersection points

3.

 

Power spectrum 
displays wide continuum

2.

 

Autocorrelation 
function decays 

fast to zero
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Summary Dissipative vs. Conservative and 
Permanent vs. Transient Chaos

Transient: typical 
initial conditions from 
the fractal basin 
boundary (Cantor 
filaments) result in 
finite time chaotic 
behavior

 

lasts for 
finite time while the 
system is approaching 
attractors

Permanent:

 

Hierarchically 
nested pattern of chaotic 
bands (fat fractals) and 
regular island –

 

there are no 
attractors

 

(due to 
conservation of energy and 
phase space volume) -

 

instead 
the appearance of regular or 
chaotic motion strongly 
depends on the initial 
conditions and the total 
energy. 

Transient:

 

Chaotic 
scattering where 
motion starting from 
specific initial 
conditions (Cantor 
clouds) is irregular in a 
finite region of space in 
which significant forces 
act.

Permanent:

 
trajectory in phase 
space starting from 
arbitrary initial 
conditions ends up on 
strange attractor 
(Cantor filaments) as 
a bounded region of 
phase space where 
trajectories appear 
to skip around 
randomly.

KAM



Introduction to deterministic chaosPHYS 460/660: Computational Methods of Physics

Do Computers Simulations of Chaos Make Any Sense?

Shadowing Theorem:

 

Numerically 
computed chaotic

 

Although a trajectory 
diverges exponentially from the true 
trajectory with the same initial 
coordinates, there exists an errorless 
trajectory with a slightly different initial 
condition that stays near ("shadows") the 
numerically computed one. Therefore, the 
fractal

 

structure of chaotic trajectories 
seen in computer maps is real. 
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