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Magnetism is One of the Oldest Complex 
Phenomena Known to Humankind
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From Lodestones to Nanomagnetism
 and Semiconductor Spintronics

(Ga,Mn)As
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Lodestone (Chinese –
 

Loving Stone)
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Unification of Electricity and Magnetism

Two results: 

The development of a fundamental understanding of electromagnetism.

Strong technological need for better magnetic materials and stronger magnets.
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Permanent Magnets vs. Current Carrying Wires: 
Quantum vs. Classical Physics
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Microscopic Structure of Permanent Magnets
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Ferromagnetic Materials: 
“Hard”

 
vs. “Soft”
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Development of 
(Hard) Ferromagnetic Materials
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Quantum Mechanics of Magnetism Summarized
Due to the motion of their electrons, some atoms can have

 

intrinsic 
magnetic moments. Other atoms develop magnetic moments when placed 
in an external magnetic field.

If atoms have zero magnetic moment, then an applied field induces 
magnetic moments that are aligned anti-parallel to the applied field. The 
magnetization is such that . This is

 

called

 

diamagnetism.

If atoms have non-zero magnetic moments that point in random 
directions then the sum over many atoms gives zero magnetization. An 
applied field tends to align the magnetic moments so that

 

. 
This is

 

called

 

paramagnetism.

If atoms have non-zero magnetic moments that point in the same 
direction then the sum over many atoms gives finite magnetization. This 
is called

 

ferromagnetism.

H

M 0M H 

0M H 

Bohr-van Leeuwen Theorem:

 

At any finite temperature, and in all finite applied electric or

 
magnetic fields, classical magnetization of a collection of electrons in thermal equilibrium 

vanishes identically. 
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Classification of Phase Transitions and 
Magnetization as the Order Parameter 



 

Spontaneous magnetization (in the absence of magnetic field): Order 
Parameter. 



 

Ordered phase

 

spontaneously breaks

 

spin rotation symmetry.


 

First Order Phase Transitions:

 

discontinuity in the order parameter or 
energy (i.e., first derivative of the free energy). 



 

Second order Phase Transitions:

 

divergence in the susceptibility or 
specific heat (i.e., second derivative of the free energy).

Ferromagnet:
Spins aligned

Paramagnet:
Spins disordered

Increase temperature
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Where Do Phase Transitions Occur?

Energy-Entropy argument:

F E TS 
At high temperature the

 

entropy S

 

always dominates the

 

free energy, 
and the free energy is minimizes by maximizing

 

S.

At low temperatures, there is a possibility that

 

internal energy E

 dominates

 

TS in free energy, and free energy is minimized by minimizing

 

E.

If the macroscopic state of the system obtained by these two 
procedures are different, than we conclude that at least one

 

phase 
transition has occurred at some intermediate temperature.
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Familiar Phase Diagram: Liquid-Gas-Solid

Notice that, while the melting curve, in principle, can be extended to infinity, the gas-liquid/boiling 
curve terminates at a point, beyond which the two phases cannot be distinguished.

This point is called a critical point and beyond the critical point, the system is in a supercritical fluid 
state. The temperature at which this point occurs is called the critical temperature.

At a critical point, thermodynamic quantities expressed as first-order derivative of the free energy 
remain continuous, but derivatives of these functions may diverge. Examples of such divergent 
quantities are the heat capacity, isothermal compressibility, magnetic susceptibility, etc. 

The boundary lines between 
phases are called the 

coexistence lines. Crossing a 
coexistence line leads to a 

first order

 

phase transition, 
which is characterized by a 

discontinuous change in  
thermodynamic quantities 

which are first –order 
derivative of the free energy, 

such as volume, enthalpy, 
magnetization.
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Order Parameter and Critical Exponents for 
Liquid-Gas Phase Transition

The divergences in thermodynamic derivative quantities occur in the same way 
for systems belonging to the

 

same universality class. These divergences behave as

 
power laws, and hence can be described by the

 

exponents in the power laws. 
These exponents are known as the

 

critical exponents. 

The dashed curve 
corresponds to the gas-

 
liquid coexistence curve. 

Below the critical isotherm, 
the gas-liquid coexistence 

curve describes how large a 
discontinuous change in the 
density occurs during first-

 
order gas-liquid phase 

transition. At the inflection 
point, which corresponds to 

the critical point, the 
discontinuity goes to 0

( )L G cT T   
2

2V c
V

FC T T T
T

 
    


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Critical Fluid of Carbon Dioxide

The critical point

 for carbon dioxide 
occurs at a pressure 

p=73.8

 

bar       
and a temperature 

Tc

 

=31.1°C

http://www.chem.leeds.ac.uk/People/CMR/criticalvid.html
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Ising
 

Model in 1-Dimension
The Ising

 

model

 

is a simple classical

 

model that illustrate the physics of first 
and second order phase transitions, critical behavior, and hysteresis.

iS the spins can point in two directions only (up or down): the 
up direction corresponds to spin +1 and the down direction 

to spin -1. 

localized spins interact with their nearest neighbors 
which is a model of

 

magnetic insulator

1

1
1

L

i i
i

E J S S





  
J is the exchange coupling constant

L is the number of spins

0J  

Classical spins → Ising

 

model

energy is minimized  when 
spins are aligned, so this  
models ferromagnetism

1

1
1

ˆ ˆˆ
L

i i
i

H J S S





  
 

Quantum spins → Heisenberg model

 ˆ ˆ ˆ ˆ, ,
2i x y zS   

 
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Canonical Ensemble
 

of Statistical Physics 
for Systems in Contact with the Heat Bath

The system of spins is considered to be in contact with a heat bath at 
temperature T. 

The set of spins can exchange energy with the heat bath, in such

 

a 
way that the system can come into thermal equilibrium

 

with the heat 
bath. In thermal equilibrium, the probability of finding the system in a 
particular microstate     is :

/ BE k TP e 


 The right hand side of this expression is 
called the

 

Boltzmann factor

 

and kB

 

is the 
Boltzmann constant 

2L



A microstate of the system is simply a particular arrangement of

 

spins.

There are        different possible microstates, many of which are 
degenerate, i.e., they have the same energy as other states.

Ising

 

model example:
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Magnetization of Ising
 

Ferromagnet
Total magnetization of a particular microstate

 

is:

1

L

i
i

M S


 
In general, the system does not remain in a single state but passes 
through many microstates which are compatible with the macrostate

 characterized by temperature T. 

The likelihood that it is a particular state at any time is given by

The average (or measured) values

 

of the magnetization and energy in 
the macrostate

 

specified by temperature T are:

P

M P M E P E   
 

  



Monte Carlo Simulations in Statistical PhysicsPHYS 460/660: Computational Methods of Physics

All Thermodynamic Quantities Can Be 
Obtained from the Partition Function

Partition function is the “magic function”

 

in Statistical Physics 

For canonical ensemble it is obtained by obtained by summing the

 Boltzmann factors:

 
2

2
2

22 2

2 2 2

exp

ln 1 1, ,

ln 1 1

B

V

Z E E Z E P Z E

Z ZE E
Z k T

E E Z Z ZC
T T T T Z Z

   
 





 

  
   


      



 
    

 

      
              

 

Since the probabilities must sum to unity:

From      one can compute any other thermodynamic quantity:

 exp BE k T
P

Z







 exp lnB BZ E k T F k T Z


    

Z
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One Hamiltonian Many Phases?

As late as 1937, most of physicist were unaware of Kramer’s work, and even 
Sommerfeld

 

believed that the partition function describes only one phase (and 
could not describe liquid-gas coexistence, for example)! 

At a congress in Amsterdam to commemorate the birth of Van der

 

Waals , there 
was confusion as to whether the partition function could give a sharp phase 
transition. 

Kramers, as chairman, put the issue to vote, but the outcome was

 

“inconclusive”!

/ˆ limBE k T

N

ZH E E E Z e
N


  






   

Kramers

 

1936:

water icevapor
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Brute Force Computation of the Partition 
Function for the Ising

 
Model Does Not Work!

Suppose we want to calculate the exact partition function Z

 

numerically. We

 

need 
to do this for all T, but let us start with just one temperature. 

Real system has O(1023) spins,  try first 32x32 lattice with O(103) spins:

32 32 3002 10 

→The calculation runs during the whole age of the Universe:

→Number of configurations in the sum =

→Gigantic parallel supercomputer with 10 million processors:

 

Each 
processor could generate a configuration C, calculate  its energy E(C)

 

and 
the Boltzmann factor  exp[-E(C)/kB

 

T], and add it to the sum over 
configurations in one nanosecond.

7 9 14 10configurations sec10 CPU 10 10 10 years
CPU×s year

 

4010 (just for a single temperature!)
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Naïve
 

Monte Carlo Numerical Sampling 
Does Not Work Either

The ideal situation would be to sample configurations with a probability 
given by their Boltzmann weight

 

, thereby avoiding low probability 
microstates  naïve 

The

 

Monte Carlo Average

 

would  then be simply given by:

1

1 MCN

MC

M M
N 



 
However, this does not work because the sampling probability:

depends on the partition function

 

,

 

which is  what we are trying to calculate 
in the first place!

/ BE k TeP
Z









P

Z
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Metropolis Monte Carlo Algorithm
The spins are initially set at random so that the starting state

 

is paramagnetic. 
The system is then allowed to come into equilibrium with the heat bath at temperature 
T, using the following

 

Metropolis Monte Carlo computational algorithm:

flipE E 

0flipE 

/flip BE k Trand e

step 3

0flipE 

step 4
 

→

step 1
 

→ Choose a spin at random:

step 2
 

→ Calculate the energy

 

required to make it flip.

If               ,  then flip the spin

 

since this will 
takes the system to a  lower energy state.

rand P

[0,1)rand 

Re
pe

at
 s

te
ps

 1
-3

 
m

an
y 

ti
m

es
!

If

 

, choose a

 

uniform random number

If then flip the spin (a processes with probability P

 
is performed if                 ). Otherwise do not

 

flip the spin.
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Theory Behind Metropolis Monte Carlo: 
Markov Chains and Detailed Balance

Let us set up a so-called

 

Markov chain

 

of configurations   by introducing 
fictitious dynamics →

 

the “time”

 

t

 

is computer time (marking the number of 
iterations of the procedure), NOT real time since our statistical system is 
considered to be in equilibrium, and therefore time invariant.

→Probability to be in configuration A at time T is: 

→The transition probability (per unit time) to go from A to B is: ( )W A B

( , 1) ( , ) [ ( ) ( , ) ( ) ( , )]
B

P A t P A t W B A P B t W A B P A t     

( , )P A t

Equilibrium                                  can be ensured by satisfying the detailed balancelim ( , ) ( )
t

P A t p A



For the special case of the Boltzmann probability distribution ( )/( ) BE A k Tp A e Z

( )/
/

( )/

( ) ( )
( ) ( )

( ) ( )

B
B

B

E B k T
E k T

E A k T

W A B p B e e
W B A p A e

E E B E A







  


  

Over Los Alamos dinner party in 1953

Metropolis, Teller, and Rosenbluth

 

chose: 
/ , 0

( )
1         , 0

BE k Te E
W A B

E

   
  

 
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General Requirements 
for Validity of Monte Carlo Algorithms

Valid Monte Carlo algorithm requires that:

1.

 

We have a means of generating a new configuration B

 from a previous configuration A

 

such that the transition 
probability                    satisfies detailed balance. 

2.

 

The generation procedure is ergodic, so that every 
configuration can be reached from every other 
configuration in a finite number of iterations.

Metropolis

 

algorithm satisfies the first criterion for all statistical systems. 

Second criterion is model dependent, and not always true (e.g. at T=0). 

( )W A B
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Remove Edge Effects by Using 
Periodic Boundary Conditions

Spins are arranged on a square grid, with L spins on a side.

To reduce the effects of the edges and focus on the bulk properties 
introduce Periodic Boundary Conditions:

 

each spin now has 4 neighbors.


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Fluctuations in Monte Carlo Time “Evolution”
After sufficient MC “time”

 

steps, the system comes into equilibrium with the heat 
bath. There will be

 

fluctuations in

 

E and

 

M but the mean rate of energy increasing 
transitions will become the same as the mean rate of energy decreasing transitions. 

E
ne

rg
y 

pe
r s

pi
n

The higher the temperature the higher the energy. At low temperatures  the 
spins arrange themselves into a ferromagnetic state. At high temperatures, the 
mean magnetization is zero, i.e., the system is paramagnetic. 

M
ag

ne
tiz

at
io

n 
pe

r s
pi

n
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Energy and Magnetization vs. Temperature

Add more points  around the 
critical temperature to fill 

the gap!
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Fluctuation-Dissipation Theorem Gives 
Expressions for the Response Functions

2( ) 1( ) 0V

L

C E Ef L
L T L E L




 
    

Response functions (and, therefore, dissipation) are related to 
fluctuations in equilibrium:

We expect that specific heat per spin does not depend on the total 
system size. Therefore fluctuations become less important in large 
systems (true away from critical points!): 

2
22

2

22

( )def

V V
B

def

E EC C E E
T T k T

M
M M

H



  

       

      
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Singular (!) Physical Quantities 
Near the Critical Point

The differences between the Monte Carlo simulation and  the exact 
analytical results (when they exist) arise primarily from using a finite 
number of spins in computer simulations. 
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First and Second Order Phase Transitions in  
Ferromagnet-Paramagnet Systems

Notice an inflection point along the isotherm: 

( ) ,c cm T T T T 

, and 0c
m T T h
h


  


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All Divergences at Tc

 

Can Be Reduced to  
Fundamental Divergence of the Correlation Length
Order parameter –

 

magnetization

 

–

 

can be written as the volume integral over the 
magnetization density: 1( ) , HM d m e

Z
  r r  

Correlation function:

shows how the value of the order parameter at one point is correlated to its 
value at some other point.
If  decreases very fast with distance, then far away points are relatively uncorrelated and the 
system is dominated by its microscopic structure and short-ranged forces. 

A slow decrease  would imply that faraway points have a large degree of correlation or influence on 
each other. 

The system thus becomes organized at a macroscopic level with the possibility of

 

new structure 
beyond the obvious one dictated by the short-ranged microscopic forces:

  ( ) ( ) (0) ( ) (0) ( ) ( ) (0) (0)m m m m m m m m     r r r r r

/( )

at : , ( ) , 2

p r
c

pc
c

c

T T r e

T TT r p d
T





 

 





  


    

r

r
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Correlation Length in Pictures
All lattice spins aligned at T=0 Lattice spins randomly oriented at high temperature

Correlated groups of spins 
as the critical 
temperature is 

approached from above

Correlation length
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Critical Slowing Down
Ising

 

model does not have dynamics built into it -

 

there is no kinetic energy term associated 
with spins –

 

so that Metropolis Monte Carlo method generated successive configurations of 
spins do not represent the real time evolution. Nevertheless, it is useful to measure a 
relaxation time for the “Metropolis dynamics" because it helps to determine how many steps 
to discard in order to generate statistically independent configurations:

2.1

zz
cT T

z

   


1

0

1( )
t

t
t t

t
C M M e

N







 






  

The maximum possible value for  ξ

 

in system of

N = L x L spins is ξ

 

~L, so that τ~L2.1~N around Tc

 

.

This makes simulations difficult because the 
Metropolis algorithm time scales like N, so the time 
to generate independent Metropolis configurations 
scales like N τ

 

~ N2

 

= L4.

Metropolis algorithm is a local algorithm where 
one spin is tested and flipped at a time. Near Tc

 

the 
system develops large domains of correlated spins 
which are �di

 

cult

 

to break up -> use non-local or 
cluster algorithms (such as Wolf algorithm).
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