Monte Carlo Simulations in Statistical
Physics: Phase Transitions in the
Ising Model of Magnetism

Branislav K. Nikoli¢

Department of Physics & Astronomy, University of Delaware, Newark, DE 19716, U.S.A.
PHYS 460/660: Computational Methods of Physics
http://wiki.physics.udel.edu/phys660

i Minh P
IS ARG Corrpltons ety of i
E:--.-

e m | emam—— Pt A
e il ]

PHYS 460/660: Computational Methods of Physics Monte Carlo Simulations in Statistical Physics



Magnetism is One of the Oldest Complex
Phenomena Known to Humankind

"The nation that controls
magnetism will control Magneto
the universe!” Master of Magnetism
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From Lodestones to Nanomaghetism
and Semiconductor Spintronics
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Lodestone (Chinese - Loving Stone)

2 ZLROPA z Magnetite A black, isometric,
= strongly magnetic, opaque

= A mineral of the spinel group,

¢ } (Fe,0,) It constitutes an

- M § important ore of iron. Magnetite
. o Is a very common and widely

distributed accessory mineral in

EAAHNIKH AHMOKPATIA 90 , :
. rocks of all kinds

Thales of Miletus is credited with
discovering that amber rubbed with
wool or fur attracts light bodies such How is magnetite

as pieces of dry leaves or bits of magnetized in nature?
straw, and observing that lodestone
attracts iron and other lodestones. One proposal is that this
occurs during lighting
strikes when strong fields
are generated by the
current passing through

the mineral.

www.phyG.org/earthmag/lodeston.htm

PHYS 460/660: Computational Methods of Physics Monte Carlo Simulations in Statistical Physics



Unification of Electricity and Magnetism

1820 -Oersted discovers ﬁ“}/ ﬁy
that electrical currents %ﬁ;r: — *—,_-_é_fggx_
create magnetic fields 'k“"_—:z% -

1831 — Faraday discovers

that changing magnetic
fields create electric fields

— Faraday induction

Two results:

O The development of a fundamental understanding of electromagnetism.
LStrong technological need for better magnetic materials and stronger magnets.
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Permanent Magnets vs. Current Carrying Wires:
Quantum vs. Classical Physics
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Microscopic Structure of Permanent Magnets

.-"_"l-\~~ 'r';:- -
¥ M i
The magnetic energy of a ferromagnet ﬁ}’ ’ff' - ‘E\E 2
is reduced via the formation of domains | \
|
Ideal - single crystal behavior of a |
magnetically “soft” material = csss d| sswx wows
A ‘t\*:‘_.fj.l By MAAY

\ IS Iron will becomea magnalized in the
I ’ , 1 direction of any applied magnatic
-~ - ‘ field. This magnetization will produce
A a magnetic pole in the iron opposite to
. ? that pole which is nearest o
; ; ; it, 50 the iron will be attracted
More Itypmally. in poly;rystallme ferromagnets | / o K 1o sither pole of a magnet
domains are irregular in form and not perfectly o Al
matched

the domains

In bulk material
Domain size set by energy cost of forming domain walls s,y cancel, l l l I l I

balanced by the energy reduction by formation of domains leaving the Extemally
Domain wall thickness ~ 10 = 1000+ nm. material applied
unmagnetizad. magnetic field
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Ferromagnetic Materials:

"Hard" vs. "Soft"
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Development of

(Hard) Ferromagnetic Materials
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Permanent Magnets

* Why permanent marmets
— Wo resistive losses
= What's it worth
- US 5 L L.5 Billion
s 2000

Besrn, Gontra) TS

v s
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modem appliances. Each of these
contain about 1J of magnetic energy.

The number of magnets in the family car
has increased from one in the 1950's to

over thirty today.

Over 30g of magnets are produced
annually for each person on Earth.
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Quantum Mechanics of Magnetism Summarized

Due to the motion of their electrons, some atoms can have intrinsic
magnetic moments. Other atoms develop magnetic moments when placed
in an external magnetic field.

QIf atoms have zero magnetic moment, then an applied field H induces
maghetic moments that are aligned anti-parallel to the applied field. The
magnetization Mis such that M /H < 0. This is called diamagnetism.

AIf atoms have non-zero magnetic moments that point in random
directions then the sum over many atoms gives zero magnetization. An
applied field tends to align the magnetic moments so that M /H >0 .
This is called paramagnetism.

AIf atoms have non-zero magnetic moments that point in the same
direction then the sum over many atoms gives finite magnetization. This
is called ferromagnetism.

Bohr-van Leeuwen Theorem: At any finite temperature, and in all finite applied electric or
magnetic fields, classical magnetization of a collection of electrons in thermal equilibrium
vanishes identically.
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Classification of Phase Transitions and

Magnetization as the Order Parameter

Ferromagnet: Paramagnet:
Spins aligned Spins disordered

T T T T Increase temperature X T / \ \
F111 N — /]

O Spontaneous magnetization (in the absence of magnetic field): Order
Parameter.

O Ordered phase spontaneously breaks spin rotation symmetry.

O First Order Phase Transitions: discontinuity in the order parameter or
energy (i.e., first derivative of the free energy).

1 Second order Phase Transitions: divergence in the susceptibility or
specific heat (i.e., second derivative of the free energy).
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Where Do Phase Transitions Occur?

Energy-Entropy argument:
F =E-TS

At high temperature the entropy S always dominates the free energy,
and the free energy is minimizes by maximizing S.

AT low temperatures, there is a possibility that internal energy E
dominates TS in free energy, and free energy is minimized by minimizing E.

LIf the macroscopic state of the system obtained by these two
procedures are different, than we conclude that at least one phase
transition has occurred at some intermediate temperature.
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Familiar Phase Diagram: Liquid-Gas-Solid

The boundary lines between
phases are called the
coexistence lines. Crossing a
coexistence line leads to a

first order phase transition,

Pressure

solid phase
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Pa liquid critical point which is characterized by a
| | phase discontinuous change in
o thermodynamic quantities
o (IPIEPOT g gaseots phase which are first -order
vapour - derivative of the free energy,
LT
) semperature such as volume, enthalpy,
tp T:r o ° °
Tomperatire. magnetization.

ONotice that, while the melting curve, in principle, can be extended to infinity, the gas-liquid/boiling
curve terminates at a point, beyond which the two phases cannot be distinguished.

QO This point is called a critical point and beyond the critical point, the system is in a supercritical fluid
state. The temperature at which this point occurs is called the critical temperature.

LAt a critical point, thermodynamic quantities expressed as first-order derivative of the free energy
remain continuous, but derivatives of these functions may diverge. Examples of such divergent
quantities are the heat capacity, isothermal compressibility, magnetic susceptibility, etc.
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Order Parameter and Critical Exponents for

Liquid-Gas Phase Transition

P ‘ O.— s~ (T —Tc)ﬂ T>T¢ The dashed curve
corresponds to the gas-
T=Te liquid coexistence curve.

Below the critical isotherm,
T<Te  the gas-liquid coexistence
curve describes how large a
discontinuous change in the
density occurs during first-
Bt/ o order gas-liquid phase
transition. At the inflection
/ point, which corresponds to
Linear regime DE_

the critical point, the

> discontinuity goes to O

P

L The divergences in thermodynamic derivative quantities occur in the same way
for systems belonging to the same universality class. These divergences behave as
power laws, and hence can be described by the exponents in the power laws.
These exponents are known as the critical exponents.
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Critical Fluid of Carbon Dioxide

The critical point
for carbon dioxide
occurs at a pressure
p=73.8 bar
and a femperature
T.=31.1°C

http://www.chem.leeds.ac.uk/People/CMR/criticalvid.html
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Ising Model in 1-Dimension

dThe Ising model is a simple classical model that illustrate the physics of first
and second order phase transitions, critical behavior, and hysteresis.

Si QOthe spins can point in two directions only (up or down): the
up direction corresponds to spin +1 and the down direction

0 O O O to spin -1.

Qlocalized spins interact with their nearest neighbors
which is a model of magnetic insulator

Quantum spins — Heisenberg model
L -1

H = — ] Z §i .§i+1 §i:ﬁ(&x,6y,&z)
-1

Classical spins — Ising model

J is the exchange coupling constant

L -1
energy is minimized when
E — J Z S i S i1 J >OI>Spins are aligned, so this
. models ferromagnetism
I=1 L is the number of spins
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Canonical Ensemble of Statistical Physics

for Systems in Contact with the Heat Bath

dThe system of spins is considered to be in contact with a heat bath at
temperature 7.

dThe set of spins can exchange energy with the heat bath, in such a
way that the system can come into thermal equilibrium with the heat
bath. In thermal equilibrium, the probability of finding the system in a
particular microstate ¢ is :

called the Boltzmann factor and 4, is the
104 Boltzmann constant

_E /koT | T
B The right hand side of this expression is
P oce ™

Ising model example:

LA microstate of the system is simply a particular arrangement of spins.

QThere are 2" different possible microstates, many of which are
degenerate, i.e., they have the same energy as other states.
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Magnetization of Ising Ferromagnet

dTotal magnetization of a particular microstate is:

In general, the system does not remain in a single state but passes
through many microstates which are compatible with the macrostate
characterized by temperature T.

dThe likelihood that it is a particular state at any time is given by Pa

U The average (or measured) values of the magnetization and energy in
the macrostate specified by temperature T are:

(M)=2.P.M,  (E)=2 RE,
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All Thermodynamic Quantities Can Be

Obtained from the Partition Function

dPartition function is the "magic function” in Statistical Physics

For canonical ensemble it is obtained by obtained by summing the

Boltzmann factors: 5 _ Z exp (_ E_/kgT ) = F=-k;TInZ

exp (- E, /kyT)
L

QSince the probabilities must sum to unity: P =

QFrom Z one can compute any other thermodynamic quantity:

%:—Z E,exp(-BE,)=-2) E,P, =-Z(E)

Oln Z 1 0°Z 1
:><E>:_ aﬂ 9 <E2>:?aﬂ29 IB:kBT

c _E)_ _po(E)_ pemz _pl12zZ 1 (oz ’
YoaT T 68 T o0B* T|zop* z2*\op
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One Hamiltonian Many Phases?

dKramers 1936:

H|E,)=E,|E,)=>Z= ;e—Ea/kBT = @30%
VGTW/WG-!ZP Y

HAs late as 1937, most of physicist were unaware of Kramer's work, and even
Sommerfeld believed that the partition function describes only one phase (and
could not describe liquid-gas coexistence, for example)!

AT a congress in Amsterdam to commemorate the birth of Van der Waals , there
was confusion as to whether the partition function could give a sharp phase
Transition.

dKramers, as chairman, put the issue to vote, but the outcome was “inconclusive”!
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Brute Force Computation of the Partition

Function for the Ising Model Does Not Workl

[ Suppose we want to calculate the exact partition function Z numerically. We need
to do this for all T, but let us start with just one temperature.

dReal system has O(1023) spins, try first 32x32 lattice with O(103) spins:

—Number of configurations in the sum = 032%32 10300

—Gigantic parallel supercomputer with 10 million processors: Each
processor could generate a configuration C, calculate its energy E(C) and
the Boltzmann factor exp[-E(C)/k;T], and add it to the sum over
configurations in one nanosecond.

—The calculation runs during the whole age of the Universe:

o configurations <10 sec
CPUxs year

10"CPU x 10

10" years

_ 1040 (just for a single temperaturel)
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Naive Monte Carlo Numerical Sampling

Does Not Work Either

dThe ideal situation would be to sample configurations with a probability
given by their Boltzmann weight P, , thereby avoiding low probability
microstates naive

dThe Monte Carlo Average would then be simply given by:

NMC

<>—Z'V'

I\/ICal

dHowever, this does not work because the sampling probability:
—E,, /kgT

p =°
Z

depends onh the partition function Z, which is what we are trying to calculate
in the first placel
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Metropolis Monte Carlo Algorithm

L The spins are initially set at random so that the starting state is paramagnetic.
OThe system is then allowed to come into equilibrium with the heat bath at temperature
T, using the following Metropolis Monte Carlo computational algorithm:

step 2 — Calculate the energy AE = E . required to make it flip.

flip
step 3
— | If E; <0 , then flip the spin since this will
D

takes the system to a lower energy state. -
If Eﬂip >0 , choose a uniform random number rand <[0,1) “Z»_T&)’
o E
—Eu /KaT =
If rand <& "™ "®then flip the spin (a processes with probability P :‘_”—_ <
is performed if rand < P). Otherwise do not flip the spin. S é

Q.

Q)

o

step 4 —
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Theory Behind Metropolis Monte Carlo:

Markov Chains and Detailed Balance

OLet us set up a so-called Markov chain of configurations by introducing
fictitious dynamics — the “time" t is computer time (marking the number of
iterations of the procedure), NOT real time since our statistical system is
considered to be in equilibrium, and therefore time invariant.

—Probability to be in configuration A at time Tis: P(A,1)
—The transition probability (per unit time) to go from A to B is: W (A — B)

P(At+1])= P(A,t)+Z[W(B —> A)P(B,t)-W(A— B)P(A1)]

QEquilibrium Ii1m P(A,t) = p(A) can be ensured by satisfying the detailed balance
t—00

dFor the special case of the Boltzmann probability distribution p(A):e_E(A)/kBT/Z

W(A N B) p(B) e—E(B)/kBT Over Los Alamos dinner party in 1953
— = — e
W(B N A) p(A) e—E(A)/kBT
AE = E(B)—E(A)

PHYS 460/660: Computational Methods of Physics Monte Carlo Simulations in Statistical Physics
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e_AE/kBT, AE > O
1 ,AE <0

W (A - B):{



General Requirements

for Validity of Monte Carlo Algorithms

Valid Monte Carlo algorithm requires that:

1. We have a means of generating a new configuration B
from a previous configuration A such that the transition
probability W (A — B) satisfies detailed balance.

2. The generation procedure is ergodic, so that every
configuration can be reached from every other
configuration in a finite number of iterations.

HdMetropolis algorithm satisfies the first criterion for all statistical systems.

dSecond criterion is model dependent, and not always true (e.g. at T=0).
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Remove Edge Effects by Using

Periodic Boundary Conditions

Spins are arranged on a square grid, with L spins on a side.

dTo reduce the effects of the edges and focus on the bulk properties
introduce Periodic Boundary Conditions: each spin now has 4 neighbors.

oy T
v T
1l1

& &
¥ ¥ ¥ ¥
Y & & F Y
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& '
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Fluctuations in Monte Carlo Time “Evolution”

QAfter sufficient MC “time" steps, the system comes into equilibrium with the heat
bath. There will be fluctuations in £and M but the mean rate of energy increasing
transitions will become the same as the mean rate of energy decreasing ftransitions.
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Flips

dThe higher the temperature the higher the energy. At low temperatures the
spins arrange themselves into a ferromagnetic state. At high temperatures, the
mean magnetization is zero, i.e., the system is paramagnetic.
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Energy and Magnetization vs. Temperature
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Fluctuation-Dissipation Theorem Gives

Expressions for the Response Functions

Response functions (and, therefore, dissipation) are related to
fluctuations in equilibrium:

“ O(E) BT(E)-(e) ] (kAB?;

dWe expect that specific heat per spin does not depend on the total
system size. Therefore fluctuations become less important in large
systems (true away from critical pointsl):

C, f(AE) AE

# f(L):>—oc

L T L J_Hoo
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dThe differences between the Monte Carlo simulation and the exact
analytical results (when they exist) arise primarily from using a finite
number of spins in computer simulations.
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First and Second Order Phase Transitions in
Ferromagnet-Paramagnet Systems

T>Te Spin up phase
- o ——— > 1
h Spin down phase T
om

— >, T =T, andh=0
oh

dNotice an inflection point along the isotherm:
m~(T,-T),T<T.
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All Divergences at T.Can Be Reduced to

Fundamental Divergence of the Correlation Length

LdOrder parameter - magnetization - can be written as the volume integral over the

magnetization density:

M :<jdrm(r)>, <...>:%f...e‘ﬂH
QCorrelation function:

() =(m(m(){m(r) (m(®) = (m(r) ~(m(r)))(m(0) ~(m(®))))

shows how the value of the order parameter at one point is correlated to its
value at some other point.

QIf decreases very fast with distance, then far away points are relatively uncorrelated and the
system is dominated by its microscopic structure and short-ranged forces.

QA slow decrease would imply that faraway points have a large degree of correlation or influence on
each other.

O The system thus becomes organized at a macroscopic level with the possibility of new structure
beyond the obvious one dictated by the short-ranged microscopic forces:

T>T =I()=rre"*

Tl r)=r*, p=d-2+7

C

atT, : &~

c
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Correlation Length in Pictures

All lattice spins aligned at T=0 Lattice spins randomly oriented at high temperature
/ \
— — — —
\/ /
—_— — — / —_—
—_— — — —~
\
~—~ \ Correlated groups of spins
! > > > as the critical
: : tfemperature is
i > > approached from above
1 \ :

<«—Correlation length=——>
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Critical Slowing Down

HIsing model does not have dynamics built into it - there is no kinetic energy term associated
with spins - so that Metropolis Monte Carlo method generated successive configurations of
spins do not represent the real time evolution. Nevertheless, it is useful fo measure a
relaxation time for the "Metropolis dynamics" because it helps to determine how many steps
to discard in order to generate statistically independent configurations:

& y r~&~T-T|"
— T ~ ~ —
e — —~ C
C(r) = MM, ~¢e
N — 7T t=0 L= 21
L The maximum possible value for ¢ in system of ) 2. ting Model 20x20 Latice Autocarrelation Times
N =L x L spinsis  ~L, so that T~L2!~N around T,. s} +
QO This makes simulations difficult because the il
Metropolis algorithm time scales like N, so the time
to generate independent Metropolis configurations
scales like N 7~ N2 = L4 |
HdMetropolis algorithm is a local algorithm where st N\ .
one spin is tested and flipped at a time. Near T, the .| ]
system develops large domains of correlated spins -+ e ]
which are diflcult to break up -> use non-local or . .
cluster algorithms (such as Wolf algorithm). b 2 b ’ N
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