Lectures: Difference between revisions

From phys660
Jump to navigationJump to search
Line 25: Line 25:


*G. P. Berman and F. M. Izrailev, The Fermi-Pasta-Ulam problem: 50 years of progress, nlin.CD/0411062.
*G. P. Berman and F. M. Izrailev, The Fermi-Pasta-Ulam problem: 50 years of progress, nlin.CD/0411062.
*P. Dauxois, M. Peyrard, and S. Ruffo, The Fermi-Pasta-Ulam "numerical experiment": history and pedagogical perspectives, nlin.PS/0501053.
*P. Dauxois, M. Peyrard, and S. Ruffo, The Fermi-Pasta-Ulam "numerical experiment": history and pedagogical perspectives, nlin.PS/0501053.
*Focus issue of "Chaos": THE "FERMI-PASTA-ULAM" PROBLEM-THE FIRST 50 YEARS
*Focus issue of "Chaos": THE "FERMI-PASTA-ULAM" PROBLEM-THE FIRST 50 YEARS
 
*S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, ''Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem'', Am. J. Phys. '''76''', 453 (2008). [http://dx.doi.org/10.1119/1.2820396 [PDF]].
*S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, ''Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem'', Am. J. Phys. '''76''', 453 (2008). [http://dx.doi.org/10.1119/1.2820396 PDF].


*Fermi-Pasta-Ulam nonlinear lattice oscillations, T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.
*Fermi-Pasta-Ulam nonlinear lattice oscillations, T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.

Revision as of 21:42, 5 February 2012

Lecture 1: Computation as a tool for discovery in physics

Lecture 2: Numerical methods for ordinary differential equations

Lecture 3: Introduction to deterministic chaos

Lecture 4: Vibrational eigenmodes: From glasses to Fermi-Pasta-Ulam Problem

  • PDF

Vibrational eigenmodes

  • P. B. Allen and J. Kelner, Evolution of a vibrational wave packet on a disordered chain, Am. J. Phys. 66, 497 (1998). [PDF]
  • J. Fabian, Decay of localized vibrational states in glasses: A one-dimensional example, Phys. Rev. B 55, R3328 (1997). [PDF]

50th Anniversary of the Fermi-Pasta-Ulam Problem

  • G. P. Berman and F. M. Izrailev, The Fermi-Pasta-Ulam problem: 50 years of progress, nlin.CD/0411062.
  • P. Dauxois, M. Peyrard, and S. Ruffo, The Fermi-Pasta-Ulam "numerical experiment": history and pedagogical perspectives, nlin.PS/0501053.
  • Focus issue of "Chaos": THE "FERMI-PASTA-ULAM" PROBLEM-THE FIRST 50 YEARS
  • S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem, Am. J. Phys. 76, 453 (2008). [PDF].
  • Fermi-Pasta-Ulam nonlinear lattice oscillations, T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.

Lecture 5: Introduction to Fourier analysis

  • PDF

Lecture 6: Random Numbers, Random Walks, Monte Carlo, and all that

  • PDF

Lecture 7: Monte Carlo Simulations in Statistical Physics

  • PDF

Lecture 8: Computational Methods for Quantum Mechanics

  • PDF

Lecture 9: Interdisciplinary Topics in Complex Systems

  • PDF