Research Projects for High School Students: Difference between revisions

From phys660
Jump to navigationJump to search
Line 31: Line 31:
*Skyrmions:
*Skyrmions:
** '''Introduction to Skyrmions and their dynamics:'''
** '''Introduction to Skyrmions and their dynamics:'''
** N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions, Nature Nanotech '''8''', 899–911 (2013). [https://www.nature.com/articles/nnano.2013.243#citeas [PDF]]
** N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotech '''8''', 899–911 (2013). [https://www.nature.com/articles/nnano.2013.243#citeas [PDF]]
** A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech '''8''', 152–156 (2013). [https://www.nature.com/articles/nnano.2013.29 [PDF]]
** A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech '''8''', 152–156 (2013). [https://www.nature.com/articles/nnano.2013.29 [PDF]]
** J. Iwasaki, M. Mochizuki, & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nat Commun '''4''', 1463 (2013).[https://www.nature.com/articles/ncomms2442#citeas [PDF]]
** J. Iwasaki, M. Mochizuki, & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nat Commun '''4''', 1463 (2013).[https://www.nature.com/articles/ncomms2442#citeas [PDF]]

Revision as of 16:08, 28 August 2023

Introduction to computational physics

  • For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [1] )

References

Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics

References

  • R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26, 103202 (2014). [PDF]

Classical micromagnetics research projects: Annihilation of topological solitons

References

F. Han, A modern course in the quantum theory of solids (World Scientific, Singapore, 2013). (Chapter 7).

  • Domain Walls:
    • S. Woo, T. Delaney & G, Beach, Magnetic domain wall depinning assisted by spin wave bursts. Nature Phys 13, 448–454 (2017). [PDF]
    • Xi. Dong, Di. Bao, Investigations of the spin-waves excited by the collision of domain walls in nanostrips, J. Magn. Magn. Mater 539, 0304-8853 (2021). [PDF]
  • Skyrmions:
    • Introduction to Skyrmions and their dynamics:
    • N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotech 8, 899–911 (2013). [PDF]
    • A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech 8, 152–156 (2013). [PDF]
    • J. Iwasaki, M. Mochizuki, & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nat Commun 4, 1463 (2013).[PDF]
    • Skyrmion collision:
    • F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. 18, 863 (2022). [PDF]
    • A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics 6, 98 (2018). [PDF]
    • M. Á. Halász and R. D. Amado, Skyrmion–anti-skyrmion annihilation with ω mesons, Phys. Rev. D 63, 054020 (2001). [PDF]

Classical micromagnetics research projects: Magnon laser