Research Projects for High School Students: Difference between revisions

From phys660
Jump to navigationJump to search
 
(12 intermediate revisions by 2 users not shown)
Line 2: Line 2:
* For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [https://wiki.physics.udel.edu/phys824/Computer_Lab] )
* For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [https://wiki.physics.udel.edu/phys824/Computer_Lab] )
   
   
*[[Media:Introduction_to_differential_equations.txt|Introduction to differential equations for physicits]]
*[[Media:Introduction_to_differential_equations.txt|Introduction to differential equations for physicists]]
*[[Media:Coupled nonlinear oscillators.txt|Coupled differential equations: N coupled nonlinear oscillators]]
*[[Media:Coupled nonlinear oscillators.txt|Coupled differential equations: N-coupled nonlinear oscillators]]
===References===
===References===
* N. Giordano and H. Nakanishi: [http://www.physics.purdue.edu/~hisao/book/ Computational Physics] (2nd edition, Prentice Hall, New Jersey, 2005).
* N. Giordano and H. Nakanishi: [http://www.physics.purdue.edu/~hisao/book/ Computational Physics] (2nd edition, Prentice Hall, New Jersey, 2005).
Line 23: Line 23:


*[[Media:Skyrmion simulation.txt| Skyrmion simulation ]]
*[[Media:Skyrmion simulation.txt| Skyrmion simulation ]]
*[[Media:Skyrmion_simulation_2.txt| More about Skyrmion Simulations and collision of Skyrmions]]


===References===
===References===
Line 41: Line 43:
== Classical micromagnetics research projects: Magnon laser ==
== Classical micromagnetics research projects: Magnon laser ==


*[[Media:Magnon_laser.txt| Introduction to the Magnon laser theory]]


===References===
===References===
* A. Roldan-Molina, A. S. Nunez, ''Magnonic Black Holes'', Phys. Rev. Lett. '''118''', 061301 (2017). [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.061301 [PDF]]
* J. L. Gaona-Reyes, D. Bermudez, ''The Theory of optical black hole lasers'', Ann. Phys. '''380''', 4916 (2017). [https://www.sciencedirect.com/science/article/abs/pii/S0003491617300830?via%3Dihub [PDF]]
* J. S. Harms, A. Ruckriegel and R. A Duine, '' Dynamically stable negative-energy states induced by spin-transfer torques'' Phys. Rev. B '''103''', 144408 (2021).[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.144408 [PDF]]

Latest revision as of 16:26, 2 August 2024

Introduction to computational physics

  • For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [1] )

References

Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics

References

  • R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26, 103202 (2014). [PDF]

Classical micromagnetics research projects: Annihilation of topological solitons

References

F. Han, A modern course in the quantum theory of solids (World Scientific, Singapore, 2013). (Chapter 7).

  • Domain Walls:
    • S. Woo, T. Delaney & G, Beach, Magnetic domain wall depinning assisted by spin wave bursts. Nat. Phys. 13, 448–454 (2017). [PDF]
    • Xi. Dong, Di. Bao, Investigations of the spin-waves excited by the collision of domain walls in nanostrips, J. Magn. Magn. Mater 539, 0304-8853 (2021). [PDF]
  • Skyrmions:
    • Introduction to Skyrmions and their dynamics:
    • N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotech 8, 899–911 (2013). [PDF]
    • A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech 8, 152–156 (2013). [PDF]
    • J. Iwasaki, M. Mochizuki & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nat Commun 4, 1463 (2013).[PDF]
    • Skyrmion collision:
    • F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. 18, 863 (2022). [PDF]
    • A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics 6, 98 (2018). [PDF]
    • M. Á. Halász and R. D. Amado, Skyrmion–anti-skyrmion annihilation with ω mesons, Phys. Rev. D 63, 054020 (2001). [PDF]

Classical micromagnetics research projects: Magnon laser

References

  • A. Roldan-Molina, A. S. Nunez, Magnonic Black Holes, Phys. Rev. Lett. 118, 061301 (2017). [PDF]
  • J. L. Gaona-Reyes, D. Bermudez, The Theory of optical black hole lasers, Ann. Phys. 380, 4916 (2017). [PDF]
  • J. S. Harms, A. Ruckriegel and R. A Duine, Dynamically stable negative-energy states induced by spin-transfer torques Phys. Rev. B 103, 144408 (2021).[PDF]