Research Projects for High School Students: Difference between revisions
From phys660
Jump to navigationJump to search
(60 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
== Introduction to computational physics== | == Introduction to computational physics== | ||
* For an introduction to basic python libraries, review the first three notebooks from | * For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [https://wiki.physics.udel.edu/phys824/Computer_Lab] ) | ||
*[[Media: | *[[Media:Introduction_to_differential_equations.txt|Introduction to differential equations for physicists]] | ||
*[[Media: | *[[Media:Coupled nonlinear oscillators.txt|Coupled differential equations: N-coupled nonlinear oscillators]] | ||
===References=== | ===References=== | ||
* N. Giordano and H. Nakanishi: [http://www.physics.purdue.edu/~hisao/book/ Computational Physics] (2nd edition, Prentice Hall, New Jersey, 2005). | * N. Giordano and H. Nakanishi: [http://www.physics.purdue.edu/~hisao/book/ Computational Physics] (2nd edition, Prentice Hall, New Jersey, 2005). | ||
* H. Georgi: [https://ocw.mit.edu/courses/8-03sc-physics-iii-vibrations-and-waves-fall-2016/ef731c1b91d77a6db003f6c27e300d25_MIT8_03SCF16_Textbook.pdf The physics of waves] (Prentice Hall, Englewood Cliffs, 1993) Chapter 3. | |||
== Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics == | == Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics == | ||
*[[Media: | *[[Media:Introduction_to_LLG_equations.txt|Introduction to LLG equations and the Heun algorithm]] | ||
*[[Media: | *[[Media:1D LLG Code.zip|One-dimensional LLG code]] | ||
*[https://ubermag.github.io/index.html Ubermag] package for operate over existing micromagnetic simulation programs, such as [https://math.nist.gov/oommf/ OOMMF] and [https://mumax.github.io/ mumax3]. | |||
=== | ===References=== | ||
* R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, ''Atomistic spin model simulations of magnetic nanomaterials'', J. Phys.: Condens. Matter '''26''', 103202 (2014). [https://shura.shu.ac.uk/15280/1/Evans_2014_J._Phys.%253A_Condens._Matter_26_103202.pdf [PDF]] | * R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, ''Atomistic spin model simulations of magnetic nanomaterials'', J. Phys.: Condens. Matter '''26''', 103202 (2014). [https://shura.shu.ac.uk/15280/1/Evans_2014_J._Phys.%253A_Condens._Matter_26_103202.pdf [PDF]] | ||
== Classical micromagnetics research projects: Annihilation of topological solitons == | == Classical micromagnetics research projects: Annihilation of topological solitons == | ||
*[[Media:First Micromagnetic Simuation.txt|First micromagnetic simulation: Introduction to magnetic domains]] [https://ubermag.github.io/index.html] | |||
*[[Media:Spin Waves and Domain Walls.txt| Domain Wall dynamics and spin waves]] | |||
*[[Media:Skyrmion simulation.txt| Skyrmion simulation ]] | |||
*[[Media:Skyrmion_simulation_2.txt| More about Skyrmion Simulations and collision of Skyrmions]] | |||
===References=== | ===References=== | ||
* F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. '''18''', 863 (2022). [https://www.nature.com/articles/s41567-022-01638-4 [PDF]] | F. Han, [https://www.worldscientific.com/worldscibooks/10.1142/8556#t=aboutBook A modern course in the quantum theory of solids ] (World Scientific, Singapore, 2013). (Chapter 7). | ||
* A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics '''6''', 98 (2018). [https://www.frontiersin.org/articles/10.3389/fphy.2018.00098/full [PDF]] | *Domain Walls: | ||
* M. Á. Halász and R. D. Amado, ''Skyrmion–anti-skyrmion annihilation with ω mesons'', Phys. Rev. D '''63''', 054020 (2001). [https://doi.org/10.1103/PhysRevD.63.054020 [PDF]] | ** S. Woo, T. Delaney & G, Beach, ''Magnetic domain wall depinning assisted by spin wave bursts''. Nat. Phys. '''13''', 448–454 (2017). [https://doi.org/10.1038/nphys4022 [PDF]] | ||
** Xi. Dong, Di. Bao, ''Investigations of the spin-waves excited by the collision of domain walls in nanostrips'', J. Magn. Magn. Mater '''539''', 0304-8853 (2021). [https://doi.org/10.1016/j.jmmm.2021.168388 [PDF]] | |||
*Skyrmions: | |||
** '''Introduction to Skyrmions and their dynamics:''' | |||
** N. Nagaosa, Y. Tokura, ''Topological properties and dynamics of magnetic skyrmions'', Nature Nanotech '''8''', 899–911 (2013). [https://www.nature.com/articles/nnano.2013.243#citeas [PDF]] | |||
** A. Fert, V. Cros, J. Sampaio, ''Skyrmions on the track'', Nature Nanotech '''8''', 152–156 (2013). [https://www.nature.com/articles/nnano.2013.29 [PDF]] | |||
** J. Iwasaki, M. Mochizuki & N. Nagaosa, ''Universal current-velocity relation of skyrmion motion in chiral magnets'', Nat Commun '''4''', 1463 (2013).[https://www.nature.com/articles/ncomms2442#citeas [PDF]] | |||
** '''Skyrmion collision:''' | |||
** F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, ''Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet'', Nat. Phys. '''18''', 863 (2022). [https://www.nature.com/articles/s41567-022-01638-4 [PDF]] | |||
** A. A. Kovalev and S. Sandhoefner, ''Skyrmions and antiskyrmions in quasi-two-dimensional magnets'', Frontiers in Physics '''6''', 98 (2018). [https://www.frontiersin.org/articles/10.3389/fphy.2018.00098/full [PDF]] | |||
** M. Á. Halász and R. D. Amado, ''Skyrmion–anti-skyrmion annihilation with ω mesons'', Phys. Rev. D '''63''', 054020 (2001). [https://doi.org/10.1103/PhysRevD.63.054020 [PDF]] | |||
== Classical micromagnetics research projects: Magnon laser == | == Classical micromagnetics research projects: Magnon laser == | ||
*[[Media:Magnon_laser.txt| Introduction to the Magnon laser theory]] | |||
===References=== | |||
* A. Roldan-Molina, A. S. Nunez, ''Magnonic Black Holes'', Phys. Rev. Lett. '''118''', 061301 (2017). [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.061301 [PDF]] | |||
* J. L. Gaona-Reyes, D. Bermudez, ''The Theory of optical black hole lasers'', Ann. Phys. '''380''', 4916 (2017). [https://www.sciencedirect.com/science/article/abs/pii/S0003491617300830?via%3Dihub [PDF]] | |||
* J. S. Harms, A. Ruckriegel and R. A Duine, '' Dynamically stable negative-energy states induced by spin-transfer torques'' Phys. Rev. B '''103''', 144408 (2021).[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.144408 [PDF]] |
Latest revision as of 16:26, 2 August 2024
Introduction to computational physics
- For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [1] )
- Introduction to differential equations for physicists
- Coupled differential equations: N-coupled nonlinear oscillators
References
- N. Giordano and H. Nakanishi: Computational Physics (2nd edition, Prentice Hall, New Jersey, 2005).
- H. Georgi: The physics of waves (Prentice Hall, Englewood Cliffs, 1993) Chapter 3.
Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics
- Introduction to LLG equations and the Heun algorithm
- One-dimensional LLG code
- Ubermag package for operate over existing micromagnetic simulation programs, such as OOMMF and mumax3.
References
- R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26, 103202 (2014). [PDF]
Classical micromagnetics research projects: Annihilation of topological solitons
References
F. Han, A modern course in the quantum theory of solids (World Scientific, Singapore, 2013). (Chapter 7).
- Domain Walls:
- Skyrmions:
- Introduction to Skyrmions and their dynamics:
- N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotech 8, 899–911 (2013). [PDF]
- A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech 8, 152–156 (2013). [PDF]
- J. Iwasaki, M. Mochizuki & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nat Commun 4, 1463 (2013).[PDF]
- Skyrmion collision:
- F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. 18, 863 (2022). [PDF]
- A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics 6, 98 (2018). [PDF]
- M. Á. Halász and R. D. Amado, Skyrmion–anti-skyrmion annihilation with ω mesons, Phys. Rev. D 63, 054020 (2001). [PDF]
Classical micromagnetics research projects: Magnon laser
References
- A. Roldan-Molina, A. S. Nunez, Magnonic Black Holes, Phys. Rev. Lett. 118, 061301 (2017). [PDF]
- J. L. Gaona-Reyes, D. Bermudez, The Theory of optical black hole lasers, Ann. Phys. 380, 4916 (2017). [PDF]
- J. S. Harms, A. Ruckriegel and R. A Duine, Dynamically stable negative-energy states induced by spin-transfer torques Phys. Rev. B 103, 144408 (2021).[PDF]