Research Projects for High School Students: Difference between revisions
From phys660
Jump to navigationJump to search
| (32 intermediate revisions by 2 users not shown) | |||
| Line 2: | Line 2: | ||
* For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [https://wiki.physics.udel.edu/phys824/Computer_Lab] ) | * For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [https://wiki.physics.udel.edu/phys824/Computer_Lab] ) | ||
*[[Media:Introduction_to_differential_equations.txt|Introduction to differential equations for | *[[Media:Introduction_to_differential_equations.txt|Introduction to differential equations for physicists]] | ||
*[[Media:Coupled nonlinear oscillators.txt|Coupled differential equations: N coupled nonlinear oscillators]] | *[[Media:Coupled nonlinear oscillators.txt|Coupled differential equations: N-coupled nonlinear oscillators]] | ||
===References=== | ===References=== | ||
* N. Giordano and H. Nakanishi: [http://www.physics.purdue.edu/~hisao/book/ Computational Physics] (2nd edition, Prentice Hall, New Jersey, 2005). | * N. Giordano and H. Nakanishi: [http://www.physics.purdue.edu/~hisao/book/ Computational Physics] (2nd edition, Prentice Hall, New Jersey, 2005). | ||
| Line 20: | Line 20: | ||
*[[Media:First Micromagnetic Simuation.txt|First micromagnetic simulation: Introduction to magnetic domains]] [https://ubermag.github.io/index.html] | *[[Media:First Micromagnetic Simuation.txt|First micromagnetic simulation: Introduction to magnetic domains]] [https://ubermag.github.io/index.html] | ||
*[[Media:Spin Waves and Domain Walls.txt| Domain | *[[Media:Spin Waves and Domain Walls.txt| Domain Wall dynamics and spin waves]] | ||
*[[Media:Skyrmion simulation.txt| Skyrmion simulation ]] | *[[Media:Skyrmion simulation.txt| Skyrmion simulation ]] | ||
*[[Media:Skyrmion_simulation_2.txt| More about Skyrmion Simulations and collision of Skyrmions]] | |||
===References=== | ===References=== | ||
* | *Magnetic domain walls: | ||
** | ** S. Woo, T. Delaney and G. Beach, ''Magnetic domain wall depinning assisted by spin wave bursts'', Nat. Phys. '''13''', 448–454 (2017). [https://doi.org/10.1038/nphys4022 [PDF]] | ||
* | ** M. D. Petrović, U. Bajpai, P. Plecháč, and B. K. Nikolić, ''Annihilation of topological solitons in magnetism with spin wave burst finale: The role of nonequilibrium electrons causing nonlocal damping and spin pumping over ultrabroadband frequency range'', Phys. Rev. B '''104''', L020407 (2021). [https://wiki.physics.udel.edu/wiki_qttg/images/6/6c/Tdnegf_llg_dw_annihilation.pdf [PDF]]. <math> \Rightarrow </math>'''Supplementary Movie:''' [https://wiki.physics.udel.edu/wiki_qttg/images/2/2b/Dw_annihilation_tdnegf_llg_B100.mp4 Annihilation of two magnetic domain walls driven by an external magnetic field, which animates Fig. 2 in the paper.] | ||
** X. Dong and D. Bao, ''Investigations of the spin-waves excited by the collision of domain walls in nanostrips'', J. Magn. Magn. Mater '''539''', 0304-8853 (2021). [https://doi.org/10.1016/j.jmmm.2021.168388 [PDF]] | |||
*Magnetic skyrmions: | |||
** '''Introduction to Skyrmions and their dynamics:''' | ** '''Introduction to Skyrmions and their dynamics:''' | ||
** N. Nagaosa, Y. Tokura | ** N. Nagaosa, Y. Tokura, ''Topological properties and dynamics of magnetic skyrmions'', Nature Nanotech '''8''', 899–911 (2013). [https://www.nature.com/articles/nnano.2013.243#citeas [PDF]] | ||
** A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech '''8''', 152–156 (2013). [https://www.nature.com/articles/nnano.2013.29 [PDF]] | ** A. Fert, V. Cros, J. Sampaio, ''Skyrmions on the track'', Nature Nanotech '''8''', 152–156 (2013). [https://www.nature.com/articles/nnano.2013.29 [PDF]] | ||
** J. Iwasaki, M. Mochizuki | ** J. Iwasaki, M. Mochizuki & N. Nagaosa, ''Universal current-velocity relation of skyrmion motion in chiral magnets'', Nat Commun '''4''', 1463 (2013).[https://www.nature.com/articles/ncomms2442#citeas [PDF]] | ||
** '''Skyrmion collision:''' | ** '''Skyrmion collision:''' | ||
** F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. '''18''', 863 (2022). [https://www.nature.com/articles/s41567-022-01638-4 [PDF]] | ** F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, ''Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet'', Nat. Phys. '''18''', 863 (2022). [https://www.nature.com/articles/s41567-022-01638-4 [PDF]] | ||
** A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics '''6''', 98 (2018). [https://www.frontiersin.org/articles/10.3389/fphy.2018.00098/full [PDF]] | ** A. A. Kovalev and S. Sandhoefner, ''Skyrmions and antiskyrmions in quasi-two-dimensional magnets'', Frontiers in Physics '''6''', 98 (2018). [https://www.frontiersin.org/articles/10.3389/fphy.2018.00098/full [PDF]] | ||
** M. Á. Halász and R. D. Amado, ''Skyrmion–anti-skyrmion annihilation with ω mesons'', Phys. Rev. D '''63''', 054020 (2001). [https://doi.org/10.1103/PhysRevD.63.054020 [PDF]] | ** M. Á. Halász and R. D. Amado, ''Skyrmion–anti-skyrmion annihilation with ω mesons'', Phys. Rev. D '''63''', 054020 (2001). [https://doi.org/10.1103/PhysRevD.63.054020 [PDF]] | ||
== Classical micromagnetics research projects: Magnon laser == | == Classical micromagnetics research projects: Magnon laser == | ||
*[[Media:Magnon_laser.txt| Introduction to magnon laser theory]] | |||
===References=== | |||
* A. Roldan-Molina, A. S. Nunez, ''Magnonic Black Holes'', Phys. Rev. Lett. '''118''', 061301 (2017). [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.061301 [PDF]] | |||
*R. J. Doornenbal, A. Roldán-Molina, A. S. Nunez, and R. A. Duine, ''Spin-wave amplification and lasing driven by inhomogeneous spin-transfer torques'', Phys. Rev. Lett. '''122''', 037203 (2019). [https://doi.org/10.1103/PhysRevLett.122.037203 [PDF]] | |||
*K. Nakayama, K. Kasahara, T. Inada, and S. Tomita, ''Resonant amplification of spin waves with analogue black-hole horizons'', Phys. Rev. Applied '''22''', 064086 (2024). [https://doi.org/10.1103/PhysRevApplied.22.064086 [PDF]] | |||
Latest revision as of 15:23, 17 January 2026
Introduction to computational physics
- For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [1] )
- Introduction to differential equations for physicists
- Coupled differential equations: N-coupled nonlinear oscillators
References
- N. Giordano and H. Nakanishi: Computational Physics (2nd edition, Prentice Hall, New Jersey, 2005).
- H. Georgi: The physics of waves (Prentice Hall, Englewood Cliffs, 1993) Chapter 3.
Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics
- Introduction to LLG equations and the Heun algorithm
- One-dimensional LLG code
- Ubermag package for operate over existing micromagnetic simulation programs, such as OOMMF and mumax3.
References
- R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26, 103202 (2014). [PDF]
Classical micromagnetics research projects: Annihilation of topological solitons
References
- Magnetic domain walls:
- S. Woo, T. Delaney and G. Beach, Magnetic domain wall depinning assisted by spin wave bursts, Nat. Phys. 13, 448–454 (2017). [PDF]
- M. D. Petrović, U. Bajpai, P. Plecháč, and B. K. Nikolić, Annihilation of topological solitons in magnetism with spin wave burst finale: The role of nonequilibrium electrons causing nonlocal damping and spin pumping over ultrabroadband frequency range, Phys. Rev. B 104, L020407 (2021). [PDF]. Supplementary Movie: Annihilation of two magnetic domain walls driven by an external magnetic field, which animates Fig. 2 in the paper.
- X. Dong and D. Bao, Investigations of the spin-waves excited by the collision of domain walls in nanostrips, J. Magn. Magn. Mater 539, 0304-8853 (2021). [PDF]
- Magnetic skyrmions:
- Introduction to Skyrmions and their dynamics:
- N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotech 8, 899–911 (2013). [PDF]
- A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech 8, 152–156 (2013). [PDF]
- J. Iwasaki, M. Mochizuki & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nat Commun 4, 1463 (2013).[PDF]
- Skyrmion collision:
- F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. 18, 863 (2022). [PDF]
- A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics 6, 98 (2018). [PDF]
- M. Á. Halász and R. D. Amado, Skyrmion–anti-skyrmion annihilation with ω mesons, Phys. Rev. D 63, 054020 (2001). [PDF]
Classical micromagnetics research projects: Magnon laser
References
- A. Roldan-Molina, A. S. Nunez, Magnonic Black Holes, Phys. Rev. Lett. 118, 061301 (2017). [PDF]
- R. J. Doornenbal, A. Roldán-Molina, A. S. Nunez, and R. A. Duine, Spin-wave amplification and lasing driven by inhomogeneous spin-transfer torques, Phys. Rev. Lett. 122, 037203 (2019). [PDF]
- K. Nakayama, K. Kasahara, T. Inada, and S. Tomita, Resonant amplification of spin waves with analogue black-hole horizons, Phys. Rev. Applied 22, 064086 (2024). [PDF]