Hands-on Lab: Difference between revisions
From phys660
Jump to navigationJump to search
| Line 35: | Line 35: | ||
==Hamiltonian Chaos== | ==Hamiltonian Chaos== | ||
*[http://www.freewebz.com/vitaliy/triApplet/triGrav.html Chaos in Three-Body Problems] | *[http://www.freewebz.com/vitaliy/triApplet/triGrav.html Chaos in Three-Body Problems] | ||
*Poincare section of double pendulum | *[http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/DP/ Poincare section of double pendulum] | ||
*Extensible pendulum | *[http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/EP/ Extensible pendulum] | ||
*Standard area preserving map | *[http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/Standard/ Standard area preserving map] | ||
==Transient Chaos== | ==Transient Chaos== | ||
Revision as of 04:32, 4 February 2012
Unix
Matlab
Hands-on tutorials by the Instructor
Hands-on tutorials by MathWorks
LaTeX
Templates
- PHYS660 template and the embedded PDF figure
- Math into LaTeX: How to Beautify Equations (and the embedded PDF figure)
- REVTEX4 template (apssamp.tex)
LaTeX packages
- MikTeX (free LaTeX implementation for Windows)
- Texmaker (free TeX Editor for Windows, Linux, or Mac OS)
Java Applets
Dissipative Chaos
- Chaos in Driven Pendulum
- Poincare Section of Driven Pendulum
- Duffing Equation Attractor (Real Space)
- Lorentz Attractor
- Strange Attractors
Hamiltonian Chaos
- Chaos in Three-Body Problems
- Poincare section of double pendulum
- Extensible pendulum
- Standard area preserving map
Transient Chaos
Fractals
- Fractal Coastlines
- Diffusion Limited Aggregation
- Mandelbrot Set
- Julia Set
Nonlinear Physics and Solitons
- Toda Lattice Soliton
- KdV Solitons
- FPU paradox in Coupled Pendulums
Fourier Techniques
- Normal Modes of Coupled Oscillators: a) Three, b) Many, c) Phonons in Solids
- Fourier Series
- Fourier Transform
- Discrete-time Fourier Transform
- Fourier Syntesis
- Convolution and Autocorrelation
Statistical Physics
- Brownian Motion
- Random Walk in 1D
- Random Walk in 2D
- Self-Avoiding Random Walk
- Monte Carlo Estimatation for Pi
- Percolation
- Ising Model Java Applet
Quantum Mechanics
- The two slit experiment and the collapse of the wavefunction
- Detector in two slit experiment
- Quantum Scattering of Wave Packet
- Visual Quantum Mechanics
- Quantum Mechanics Applets
Complex Systems
- Cellular Automata
- Game of Life
- BTW Sandpile: A model of Self-Organized Criticality
- 3D BTW Sandpile Simulation by UD student John Meyer
- Forest Fire: A model of Self-Organized Criticality
- Spin Glasses
- Hopfield Neural Network
- Neural Networks with Java
- Self-Organizing Networks
- Image Compression by Neural Networks
- Genetic Algorithms