Hands-on Lab: Difference between revisions
From phys660
Jump to navigationJump to search
Line 45: | Line 45: | ||
==Conservative Chaos== | ==Conservative Chaos== | ||
*[http:// | *[http://astro.u-strasbg.fr/~koppen/body/ThreeBody.html Chaos in three-body problem] | ||
*[http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/DP/ Poincare section of double pendulum] | *[http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/DP/ Poincare section of double pendulum] | ||
*[http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/EP/ Extensible pendulum] | *[http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/EP/ Extensible pendulum] |
Revision as of 14:27, 13 March 2014
Unix
Matlab
Hands-on tutorials by the Instructor
Hands-on tutorials by MathWorks
LaTeX
Templates for project reports
- PHYS660 template and the embedded PDF figure
- Math into LaTeX: How to Beautify Equations (and the embedded PDF figure)
LaTeX packages
- MikTeX (free LaTeX implementation for Windows)
- Texmaker (free TeX Editor for Windows, Linux, or Mac OS)
Mathematica
Hands-on tutorials by the Instructor
Hands on tutorials by Wolfram Research
Java Applets
Dissipative Chaos
- Duffing equation attractor
- Damped driven pendulum
- Poincare section for damped driven pendulum
- Lorentz attractor
Conservative Chaos
- Chaos in three-body problem
- Poincare section of double pendulum
- Extensible pendulum
- Standard area preserving map
Transient Conservative Chaos
Fractals
Fourier Analysis
- Vibrational normal modes of coupled oscillators
- Vibrational normal modes (phonons) in solids
- Vibrational normal modes of organic molecules
- Fourier series
- Fourier transform
- 1D Fast Fourier Transform
Nonlinear Physics and Solitons
Statistical Physics
- Ising model
- Monte Carlo estimatation for
- Brownian motion
- Random walk in 1D
- Random walk in 2D
- Self-avoiding random walk
- Percolation
- Molecular dynamics
Quantum Mechanics
- The two slit experiment and the collapse of the wavefunction
- Detector in two slit experiment
- Quantum Scattering of Wave Packet
- Visual Quantum Mechanics
- Quantum Mechanics Applets
Complex Systems
- Cellular automata
- Game of life
- BTW sandpile CAM: A model of self-organized criticality
- BTW sandpile CAM simulation with 3D visualization by DPA student John Meyer
- Forest fire: A model of self-organized criticality
- Hopfield neural network as a model of associative memory
- Neural networks with Java
- Image compression by neural networks
- Spin glasses
- Genetic algorithms