Research Projects for High School Students: Difference between revisions
From phys660
Jump to navigationJump to search
Line 28: | Line 28: | ||
*Skyrmions: | *Skyrmions: | ||
** Nagaosa, | ** Introduction to Skyrmions and their dynamics: | ||
** N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech '''8''', 899–911 (2013). [https://www.nature.com/articles/nnano.2013.243#citeas [PDF]] | |||
** A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nature Nanotech '''8''', 152–156 (2013). [https://www.nature.com/articles/nnano.2013.29 [PDF]] | ** A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nature Nanotech '''8''', 152–156 (2013). [https://www.nature.com/articles/nnano.2013.29 [PDF]] | ||
** J. Iwasaki, M. Mochizuki, & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets. Nat Commun '''4''', 1463 (2013).[https://www.nature.com/articles/ncomms2442#citeas [PDF]] | |||
** Skyrmion collision: | |||
** F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. '''18''', 863 (2022). [https://www.nature.com/articles/s41567-022-01638-4 [PDF]] | ** F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. '''18''', 863 (2022). [https://www.nature.com/articles/s41567-022-01638-4 [PDF]] | ||
** A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics '''6''', 98 (2018). [https://www.frontiersin.org/articles/10.3389/fphy.2018.00098/full [PDF]] | ** A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics '''6''', 98 (2018). [https://www.frontiersin.org/articles/10.3389/fphy.2018.00098/full [PDF]] |
Revision as of 09:37, 28 August 2023
Introduction to computational physics
- For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [1] )
- Introduction to differential equations for physicits
- Coupled differential equations: N coupled nonlinear oscillators
References
- N. Giordano and H. Nakanishi: Computational Physics (2nd edition, Prentice Hall, New Jersey, 2005).
- H. Georgi: The physics of waves (Prentice Hall, Englewood Cliffs, 1993) Chapter 3.
Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics
- Introduction to LLG equations and the Heun algorithm
- One-dimensional LLG code
- Ubermag package for operate over existing micromagnetic simulation programs, such as OOMMF and mumax3.
References
- R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26, 103202 (2014). [PDF]
Classical micromagnetics research projects: Annihilation of topological solitons
References
- Domain Walls:
- Skyrmions:
- Introduction to Skyrmions and their dynamics:
- N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech 8, 899–911 (2013). [PDF]
- A. Fert, V. Cros, J. Sampaio, Skyrmions on the track. Nature Nanotech 8, 152–156 (2013). [PDF]
- J. Iwasaki, M. Mochizuki, & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets. Nat Commun 4, 1463 (2013).[PDF]
- Skyrmion collision:
- F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. 18, 863 (2022). [PDF]
- A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics 6, 98 (2018). [PDF]
- M. Á. Halász and R. D. Amado, Skyrmion–anti-skyrmion annihilation with ω mesons, Phys. Rev. D 63, 054020 (2001). [PDF]