Schedule: Difference between revisions
From phys800
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(20 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
===Fall 2022=== | ===Fall 2022=== | ||
* B. K. | * B. K. Nikolić, [https://wiki.physics.udel.edu/wiki_qttg/images/3/35/Spin_pumping_mtj.pdf One-dimensional models of adiabatic charge and spin pumping]. | ||
* J. A. Fernandez Sanchez, Schwinger-Keldysh ("in-in") vs. Feynman ("in-out") path integral with harmonic oscillator examples. | * J. A. Fernandez Sanchez, Schwinger-Keldysh ("in-in") vs. Feynman ("in-out") path integral with harmonic oscillator examples. | ||
* L. H. Mai, Introduction to the Lindblad master equation with QuTiP examples [[Media:Lindblad_Master_equation_QuTiP.ipynb| | * L. H. Mai, Introduction to the Lindblad master equation with QuTiP examples [[Media:Lindblad_Master_equation_QuTiP.ipynb|[Jupyter Notebook]]]. | ||
* L. Herrera, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion. [[Media:heom_qutip_herrera.ipynb| | * L. Herrera, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion. [[Media:heom_qutip_herrera.ipynb|[Jupyter Notebook]]]. | ||
* J | |||
* J. | ===Spring 2023=== | ||
* J. Varela-Manjarres, Floquet engineering of quantum systems. | |||
* S. J. V. Urbano, Application of the Helfrich elasticity theory to the morphology of red blood cells. | |||
===Fall 2023=== | |||
*B. K. Nikolić, [[Media:PHYS800_hubbard_dimer.pdf|From Hubbard dimer to effective antiferromagnetic Hubbard model for two spins]] | |||
*B. K. Nikolić, [[Media:PHYS800_magnons.pdf|Ground state and low-energy magnon excitations of ferro- and antiferromagnets]] | |||
* F. Garcia-Gaitan, Introduction to DMRG. | |||
* F. Garcia-Gaitan, Antiferromagnetic and altermagnetic magnons. | |||
* F. Garcia-Gaitan, Effective spin Hamiltonian from light-driven Hubbard model. | |||
===Spring 2024=== | |||
* F. Reyes-Osorio, Schwinger-Keldysh field theory. | |||
* K. J. Rueda-Espinosa, Jaynes–Cummings model. |
Latest revision as of 11:27, 29 February 2024
Fall 2022
- B. K. Nikolić, One-dimensional models of adiabatic charge and spin pumping.
- J. A. Fernandez Sanchez, Schwinger-Keldysh ("in-in") vs. Feynman ("in-out") path integral with harmonic oscillator examples.
- L. H. Mai, Introduction to the Lindblad master equation with QuTiP examples [Jupyter Notebook].
- L. Herrera, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion. [Jupyter Notebook].
Spring 2023
- J. Varela-Manjarres, Floquet engineering of quantum systems.
- S. J. V. Urbano, Application of the Helfrich elasticity theory to the morphology of red blood cells.
Fall 2023
- B. K. Nikolić, From Hubbard dimer to effective antiferromagnetic Hubbard model for two spins
- B. K. Nikolić, Ground state and low-energy magnon excitations of ferro- and antiferromagnets
- F. Garcia-Gaitan, Introduction to DMRG.
- F. Garcia-Gaitan, Antiferromagnetic and altermagnetic magnons.
- F. Garcia-Gaitan, Effective spin Hamiltonian from light-driven Hubbard model.
Spring 2024
- F. Reyes-Osorio, Schwinger-Keldysh field theory.
- K. J. Rueda-Espinosa, Jaynes–Cummings model.