Schedule: Difference between revisions
From phys800
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
===Fall 2022=== | ===Fall 2022=== | ||
* B. K. Nikolić, [https://wiki.physics.udel.edu/wiki_qttg/images/3/35/Spin_pumping_mtj.pdf One-dimensional models of adiabatic charge and spin pumping] | * B. K. Nikolić, [https://wiki.physics.udel.edu/wiki_qttg/images/3/35/Spin_pumping_mtj.pdf One-dimensional models of adiabatic charge and spin pumping] | ||
* J. A. Fernandez Sanchez, Schwinger-Keldysh ("in-in") vs. Feynman ("in-out") path integral with harmonic oscillator examples | * J. A. Fernandez Sanchez, Schwinger-Keldysh ("in-in") vs. Feynman ("in-out") path integral with harmonic oscillator examples | ||
* L. H. Mai, Introduction to the Lindblad master equation with QuTiP examples [[Media:Lindblad_Master_equation_QuTiP.ipynb|[Jupyter Notebook]]] | * L. H. Mai, Introduction to the Lindblad master equation with QuTiP examples [[Media:Lindblad_Master_equation_QuTiP.ipynb|[Jupyter Notebook]]] | ||
* L. Herrera, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion. [[Media:heom_qutip_herrera.ipynb|[Jupyter Notebook]]] | * L. Herrera, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion. [[Media:heom_qutip_herrera.ipynb|[Jupyter Notebook]]] | ||
===Spring 2023=== | ===Spring 2023=== | ||
* J. Varela-Manjarres, Floquet engineering of quantum systems | * J. Varela-Manjarres, Floquet engineering of quantum systems | ||
* S. J. V. Urbano, Application of the Helfrich elasticity theory to the morphology of red blood cells | * S. J. V. Urbano, Application of the Helfrich elasticity theory to the morphology of red blood cells | ||
===Fall 2023=== | ===Fall 2023=== | ||
*B. K. Nikolić, [[Media:PHYS800_hubbard_dimer.pdf|From Hubbard dimer to effective antiferromagnetic Hubbard model for two spins]] | *B. K. Nikolić, [[Media:PHYS800_hubbard_dimer.pdf|From Hubbard dimer to effective antiferromagnetic Hubbard model for two spins]] | ||
*B. K. Nikolić, [[Media:PHYS800_magnons.pdf|Ground state and low-energy magnon excitations of ferro- and antiferromagnets]] | *B. K. Nikolić, [[Media:PHYS800_magnons.pdf|Ground state and low-energy magnon excitations of ferro- and antiferromagnets]] | ||
* F. Garcia-Gaitan, Introduction to DMRG | * F. Garcia-Gaitan, Introduction to DMRG | ||
* F. Garcia-Gaitan, Antiferromagnetic and altermagnetic magnons | * F. Garcia-Gaitan, Antiferromagnetic and altermagnetic magnons | ||
* F. Garcia-Gaitan, Effective spin Hamiltonian from light-driven Hubbard model | * F. Garcia-Gaitan, Effective spin Hamiltonian from light-driven Hubbard model | ||
===Spring 2024=== | ===Spring 2024=== | ||
* F. Reyes-Osorio, Schwinger-Keldysh field theory | * F. Reyes-Osorio, Schwinger-Keldysh field theory | ||
* K. J. Rueda-Espinosa, Jaynes–Cummings model. | * K. J. Rueda-Espinosa, Jaynes–Cummings model | ||
* L. Herrera, Computational projects with the Landau–Zener problem in the quantum mechanics classroom | |||
===Fall 2025== | |||
*B. K. Nikolić, Origins of THz radiation from ultrafast light-driven ferromagnets or spin-orbit-proximitized antiferromagnetic Mott insulators | |||
*K. Giraldo-Hincapie, Hubbard-Stratonovich transformation with applications (including BCS theory of superconductivity). | |||
Revision as of 10:52, 5 September 2025
Fall 2022
- B. K. Nikolić, One-dimensional models of adiabatic charge and spin pumping
- J. A. Fernandez Sanchez, Schwinger-Keldysh ("in-in") vs. Feynman ("in-out") path integral with harmonic oscillator examples
- L. H. Mai, Introduction to the Lindblad master equation with QuTiP examples [Jupyter Notebook]
- L. Herrera, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion. [Jupyter Notebook]
Spring 2023
- J. Varela-Manjarres, Floquet engineering of quantum systems
- S. J. V. Urbano, Application of the Helfrich elasticity theory to the morphology of red blood cells
Fall 2023
- B. K. Nikolić, From Hubbard dimer to effective antiferromagnetic Hubbard model for two spins
- B. K. Nikolić, Ground state and low-energy magnon excitations of ferro- and antiferromagnets
- F. Garcia-Gaitan, Introduction to DMRG
- F. Garcia-Gaitan, Antiferromagnetic and altermagnetic magnons
- F. Garcia-Gaitan, Effective spin Hamiltonian from light-driven Hubbard model
Spring 2024
- F. Reyes-Osorio, Schwinger-Keldysh field theory
- K. J. Rueda-Espinosa, Jaynes–Cummings model
- L. Herrera, Computational projects with the Landau–Zener problem in the quantum mechanics classroom
=Fall 2025
- B. K. Nikolić, Origins of THz radiation from ultrafast light-driven ferromagnets or spin-orbit-proximitized antiferromagnetic Mott insulators
- K. Giraldo-Hincapie, Hubbard-Stratonovich transformation with applications (including BCS theory of superconductivity).