Schedule: Difference between revisions

From phys800
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
===Fall 2022===
===Fall 2022===
* B. K. Nikolić, [https://wiki.physics.udel.edu/wiki_qttg/images/3/35/Spin_pumping_mtj.pdf One-dimensional models of adiabatic charge and spin pumping].
* B. K. Nikolić, [https://wiki.physics.udel.edu/wiki_qttg/images/3/35/Spin_pumping_mtj.pdf One-dimensional models of adiabatic charge and spin pumping]  
* J. A. Fernandez Sanchez, Schwinger-Keldysh ("in-in") vs. Feynman ("in-out") path integral with harmonic oscillator examples.
* J. A. Fernandez Sanchez, Schwinger-Keldysh ("in-in") vs. Feynman ("in-out") path integral with harmonic oscillator examples
* L. H. Mai, Introduction to the Lindblad master equation with QuTiP examples [[Media:Lindblad_Master_equation_QuTiP.ipynb|[Jupyter Notebook]]].
* L. H. Mai, Introduction to the Lindblad master equation with QuTiP examples [[Media:Lindblad_Master_equation_QuTiP.ipynb|[Jupyter Notebook]]]
* L. Herrera, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion. [[Media:heom_qutip_herrera.ipynb|[Jupyter Notebook]]].
* L. Herrera, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion. [[Media:heom_qutip_herrera.ipynb|[Jupyter Notebook]]]


===Spring 2023===
===Spring 2023===
* J. Varela-Manjarres, Floquet engineering of quantum systems.
* J. Varela-Manjarres, Floquet engineering of quantum systems
* S. J. V. Urbano, Application of the Helfrich elasticity theory to the morphology of red blood cells.
* S. J. V. Urbano, Application of the Helfrich elasticity theory to the morphology of red blood cells


===Fall 2023===
===Fall 2023===
*B. K. Nikolić, [[Media:PHYS800_hubbard_dimer.pdf|From Hubbard dimer to effective antiferromagnetic Hubbard model for two spins]]
*B. K. Nikolić, [[Media:PHYS800_hubbard_dimer.pdf|From Hubbard dimer to effective antiferromagnetic Hubbard model for two spins]]
*B. K. Nikolić, [[Media:PHYS800_magnons.pdf|Ground state and low-energy magnon excitations of ferro- and antiferromagnets]]
*B. K. Nikolić, [[Media:PHYS800_magnons.pdf|Ground state and low-energy magnon excitations of ferro- and antiferromagnets]]
* F. Garcia-Gaitan, Introduction to DMRG.
* F. Garcia-Gaitan, Introduction to DMRG
* F. Garcia-Gaitan, Antiferromagnetic and altermagnetic magnons.
* F. Garcia-Gaitan, Antiferromagnetic and altermagnetic magnons
* F. Garcia-Gaitan, Effective spin Hamiltonian from light-driven Hubbard model.
* F. Garcia-Gaitan, Effective spin Hamiltonian from light-driven Hubbard model


===Spring 2024===
===Spring 2024===
* F. Reyes-Osorio, Schwinger-Keldysh field theory.
* F. Reyes-Osorio, Schwinger-Keldysh field theory
* K. J. Rueda-Espinosa, Jaynes–Cummings model.
* K. J. Rueda-Espinosa, Jaynes–Cummings model
* L. Herrera, Computational projects with the Landau–Zener problem in the quantum mechanics classroom
 
===Fall 2025==
*B. K. Nikolić, Origins of THz radiation from ultrafast light-driven ferromagnets or spin-orbit-proximitized antiferromagnetic Mott insulators
*K. Giraldo-Hincapie, Hubbard-Stratonovich transformation with applications (including BCS theory of superconductivity).

Revision as of 10:52, 5 September 2025

Fall 2022

Spring 2023

  • J. Varela-Manjarres, Floquet engineering of quantum systems
  • S. J. V. Urbano, Application of the Helfrich elasticity theory to the morphology of red blood cells

Fall 2023

Spring 2024

  • F. Reyes-Osorio, Schwinger-Keldysh field theory
  • K. J. Rueda-Espinosa, Jaynes–Cummings model
  • L. Herrera, Computational projects with the Landau–Zener problem in the quantum mechanics classroom

=Fall 2025

  • B. K. Nikolić, Origins of THz radiation from ultrafast light-driven ferromagnets or spin-orbit-proximitized antiferromagnetic Mott insulators
  • K. Giraldo-Hincapie, Hubbard-Stratonovich transformation with applications (including BCS theory of superconductivity).