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1.1 Dirac Notation and rules of Quantum Mechanics

1.1.1 States and operators

A quantum state is represented by the ket |ψ〉. The Hermitian conjugate is the bra 〈ψ|. The
inner product is

〈φ|ψ〉 = c (a number). (1.1)

If c = 〈φ|ψ〉 then the complex conjugate is c∗ = 〈φ|ψ〉∗ = 〈ψ|φ〉. Kets and bras exist in
a Hilbert space which is a generalization of the three dimensional linear vector space of
Euclidean geometry to a complex valued space with possibly infinitely many dimensions.
The inner product is linear

〈φ| (a1|ψ1〉 + a2|ψ2〉) = a1〈φ|ψ1〉 + a2〈φ|ψ2〉. (1.2)

Operators are denoted by a hat Â.

Â (c1|ψ1〉 + c2|ψ2〉) = c1Â|ψ1〉 + c2Â|ψ2〉.

The matrix element of an operator is

〈φ|Â|ψ〉 = 〈φ| (Â|ψ〉) = (〈φ|Â) |ψ〉 = c (a number). (1.3)

The expectation value of an operator for a system in state |ψ〉 is

〈Â〉 = 〈a〉 = 〈ψ|Â|ψ〉. (1.4)

The complex conjugate of the matrix element is

〈φ|Â|ψ〉∗ = 〈ψ|Â†|φ〉 = c∗ (1.5)

where Â† is the Hermitian conjugate of Â. When Â is represented by a matrix the Hermitian
conjugate is found by transposing the matrix and then taking the complex conjugate of
each matrix element. The operation of taking the Hermitian conjugate of a combination of
numbers, states, and operators involves changing c → c∗, |ψ〉 → 〈ψ|, 〈ψ| → |ψ〉, Â → Â†

and reversing the order of all elements. For example

(
c1Â

†〈φ|B̂|ψ〉〈ξ|
)†

= c∗1|ξ〉〈ψ|B̂†|φ〉Â.

1.1.2 Observables

Observables are represented by Hermitian operators which satisfy Â† = Â. The expectation
value of a Hermitian operator is real:

a∗ = 〈Â〉∗ = 〈ψ|Â|ψ〉∗ = 〈ψ|Â†|ψ〉 = 〈ψ|Â|ψ〉 = a. (1.6)

Denote the eigenstates of a Hermitian operator by |n〉. The eigenvalues are real since

〈m|Â|m〉 = 〈m|am|m〉 = am〈m|m〉 = am
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2 1 Quantum Mechanics

and
a∗m = 〈m|Â|m〉∗ = 〈m|Â†|m〉 = 〈m|Â|m〉 = am.

States corresponding to different eigenvalues are orthogonal. We assume the states are
normalized so that 〈m|n〉 = δmn. To prove orthogonality we calculate

〈m|Â|n〉 = 〈m|an|n〉 = an〈m|n〉

and

〈m|Â|n〉 =
(
〈m|Â

)
|n〉 =

(
Â†|m〉

)†
|n〉 = (am|m〉)† |n〉 = a∗m〈m|n〉 = am〈m|n〉.

Thus
(am − an)〈m|n〉 = 0

so 〈m|n〉 = 0 if m 6= n.

The eigenstates |n〉 of a Hermitian operator form a complete set. Therefore for an arbitrary
ket |ψ〉

|ψ〉 =
∞∑

n=0

cn|n〉 (1.7)

where

〈n|ψ〉 = 〈n|
∞∑

j=0

cj|j〉 =
∞∑

j=0

cj〈n|j〉 =
∞∑

j=0

cjδnj = cn.

Thus

|ψ〉 =
∞∑

n=0

cn|n〉 =
∞∑

n=0

〈n|ψ〉|n〉 =
∞∑

n=0

|n〉〈n|ψ〉 =

(
∞∑

n=0

|n〉〈n|
)
|ψ〉.

Since this is true for arbitrary |ψ〉 we can write the identity operator as

Î =

∞∑

n=0

|n〉〈n|. (1.8)

A component of |ψ〉 can be found by operating with the projection operator P̂n = |n〉〈n|.
We have

P̂n|ψ〉 = |n〉〈n|
∞∑

j=0

cj|j〉 = |n〉
∞∑

j=0

cj〈n|j〉 = |n〉
∞∑

j=0

cjδnj = cn|n〉. (1.9)

The projection operator is idempotent:

(P̂n)
2 = P̂nP̂n = (|n〉〈n|) (|n〉〈n|) = |n〉 (〈n|n〉) 〈n| = |n〉〈n| = P̂n. (1.10)

The inner product of two states can be expressed in terms of the coefficients of their decom-
position. We write |ψ〉 =

∑
n cn|n〉, |φ〉 =

∑
n bn|n〉. Then

〈φ|ψ〉 =
∑

m

b∗m〈m|
∑

n

cn|n〉 =
∑

m

∑

n

b∗mcnδmn =
∑

n

b∗ncn. (1.11)
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The spectral representation of an operator is found from

Â = ÎÂÎ =

(∑

m

|m〉〈m|
)
Â

(∑

n

|n〉〈n|
)

=
∑

m

∑

n

|m〉〈m|an|n〉〈n|

=
∑

m

∑

n

an|m〉δmn〈n| =
∑

n

an|n〉〈n|.

Thus

Â =
∑

n

an|n〉〈n|. (1.12)

The representation (1.12) is diagonal since we have expressed Â in a basis of the eigen-
vectors of Â. If we choose some other set of basis vectors {|m〉} (not the eigenvectors of Â)
then the representation will not be diagonal. Thus

Â =
∑

n

an|n〉〈n|

=
∑

n

an

(∑

m

|m〉〈m|
)
|n〉〈n|

(∑

m′

|m′〉〈m′|
)

=
∑

n,m,m′

an|m〉cmncnm′〈m′|

=
∑

m,m′

umm′ |m〉〈m′|.

where cmn = 〈m|n〉 and umm′ =
∑

n ancmncnm′ .

1.1.3 Degeneracy

Each eigenvalue aα may be associated with a subspace of dimension nα > 1. The nα degener-
ate eigenvectors can be orthonormalized to span the subspace. In this case we label the eigen-
vectors with an additional parameter r as |α, r〉 where r = 1, 2...nα and 〈β, s|α, r〉 = δαβδrs.
The eigenvalue relation is then

Â|α, r〉 = aα|α, r〉 for r = 1, ...nα. (1.13)

The identity operator can be written as

Î =
∞∑

α=0

nα∑

r=1

|α, r〉〈α, r|. (1.14)

The spectral decomposition of the operator is

Â =

∞∑

α=0

nα∑

r=1

aα|α, r〉〈α, r|. (1.15)
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4 1 Quantum Mechanics

1.1.4 Continuous Basis

A Dirac ket |ψ〉 should be thought of as an abstract symbol for a quantum state. It is not
tied to any particular representation. By taking inner products we can find a representation
in terms of a discrete set of basis states as in Eq. (1.7). This can also be generalized to a
continuous basis |ξ〉 using the orthogonality condition

〈ξ′|ξ〉 = δ(ξ − ξ′)

and the representation of the unit operator

Î =

∫
dξ |ξ〉〈ξ|.

An arbitrary state |ψ〉 can be expanded as

|ψ〉 = Î|ψ〉 =

(∫
dξ |ξ〉〈ξ|

)
|ψ〉 =

∫
dξ 〈ξ||ψ〉|ξ〉 =

∫
dξ ψ(ξ)|ξ〉

where we have introduced the wavefunction ψ(ξ) = 〈ξ|ψ〉. The wavefunction ψ(ξ) gives the
amplitude of the decomposition of the state |ψ〉 into the basis ket |ξ〉.

Using a continuous basis we can calculate the matrix elements of operators as follows.
Consider a general operator Â(ξ̂, ∂

∂ξ̂
) that is some function of ξ̂ and ∂

∂ξ̂
. For arbitrary states

|ψ〉, |φ〉 we have

〈φ|Â|ψ〉 =

∫
dξ′′dξ′〈φ|ξ′′〉〈ξ′′|Â(ξ̂,

∂

∂ξ̂
)|ξ′〉〈ξ′|ψ〉. (1.16)

Now the matrix element in the middle of the last expression is

〈ξ′′|Â(ξ̂,
∂

∂ξ̂
)|ξ′〉 = 〈ξ′′|A(ξ′,

∂

∂ξ′
)|ξ′〉 ≡ δ(ξ′′ − ξ′)A(ξ′,

∂

∂ξ′
).

Thus (1.16) becomes

〈φ|Â|ψ〉 =

∫
dξ′′dξ′ 〈φ|ξ′′〉δ(ξ′′ − ξ′)A(ξ′,

∂

∂ξ′
)〈ξ′|ψ〉

=

∫
dξ′ 〈φ|ξ′〉A(ξ′,

∂

∂ξ′
)〈ξ′|ψ〉

=

∫
dξ φ∗(ξ)A(ξ,

∂

∂ξ
)ψ(ξ). (1.17)

Equation (1.17) gives the general formula for evaluating a matrix element in terms of an
expansion in a continuous basis.

1.1.5 Representation of Derivatives

Given a ket |ψ〉 we can define another ket |dψ/dξ〉 whose representation is the derivative of
the original one. This new ket is the result of transforming the original one with an operator
and we write the transforming operator as d

dξ̂
so

d

dξ̂
|ψ〉 = |dψ

dξ̂
〉.
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The matrix element of the differential operator is

〈φ| d
dξ̂

|ψ〉 =

∫
dξ′ 〈φ| d

dξ̂
|ξ′〉〈ξ′|ψ〉 =

∫
dξ′ 〈φ| d

dξ̂
|ξ′〉ψ(ξ′) =

∫
dξ′ φ∗(ξ′)

dψ(ξ′)

dξ′
. (1.18)

Assuming the wavefunctions vanish at infinity an integration by parts gives

∫
dξ′ φ∗(ξ′)

dψ(ξ′)

dξ′
= −

∫
dξ′

dφ∗(ξ′)

dξ′
ψ(ξ′). (1.19)

Comparing (1.18) and (1.19) we get

〈φ| d
dξ̂

|ξ′〉 = −dφ
∗(ξ′)

dξ′
= −〈dφ

dξ̂
|ξ′〉

so

〈φ| d
dξ̂

= −〈dφ
dξ̂

| (1.20)

and
(
d/dξ̂

)†
= −d/dξ̂. Thus

(
id/dξ̂

)†
= id/dξ̂ and e.g. the momentum operator −i~d/dx̂

is a Hermitian operator.

If you find the steps from (1.18) - (1.20) unnecessarily complicated an alternative is to
simply note that

〈φ| d
dξ̂

|ψ〉 = 〈φ|
(
d

dξ̂
|ψ〉
)

=

∫
dξ φ∗dψ

dξ

= −
∫
dξ
dφ∗

dξ
ψ

= −〈dφ
dξ

|ψ〉

=

(
〈φ| d

dξ̂

)
|ψ〉.

Thus

〈φ| d
dξ̂

= −〈dφ
dξ̂

|.

1.1.6 Position and momentum representations

We can use the above results for a continuous basis to find the relation between the position
and momentum wavefunctions ψ(x) and φ(p). Consider position and momentum eigenkets:
x̂|x〉 = x|x〉 and p̂|p〉 = p|p〉. The matrix element of p̂ between different basis kets is

〈x|p̂|p〉 = 〈x|p|p〉 = p〈x|p〉.
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6 1 Quantum Mechanics

Using the position representation of the momentum operator we can also write this as

〈x|p̂|p〉 = 〈x|
(
−i~ ∂

∂x̂

)
|p〉 = −i~ ∂

∂x
〈x|p〉. (1.21)

This follows also from the general expression for matrix elements Eq. (1.17) 1.
Comparing we see that

∂

∂x
〈x|p〉 =

ip

~
〈x|p〉

which has solution
〈x|p〉 = Neıpx/~

with N a normalization constant.
We then observe that

ψ(x) = 〈x|ψ〉 = 〈x|
(∫

dp |p〉〈p|
)
|ψ〉 = N

∫
dp eıpx/~ψ(p)

and

ψ(p) = 〈p|ψ〉 = 〈p|
(∫

dx |x〉〈x|
)
|ψ〉 = N∗

∫
dp e−ıpx/~ψ(x).

Requiring that
∫
dx |ψ(x)|2 =

∫
dp |ψ(p)|2 gives |N |2 = 1/h. We choose N to be real and

obtain

ψ(x) =
1√
2π~

∫
dp eıpx/~ψ(p)

ψ(p) =
1√
2π~

∫
dx e−ıpx/~ψ(x),

which demonstrates that ψ(x) and ψ(p) are related by a Fourier transform. For clarity we
will sometimes write φ(p) instead of ψ(p).

1.1.7 Commuting observables

If a state |ψ〉 is an eigenstate of two observables Â and B̂ with eigenvalues α and β then

ÂB̂|ψ〉 = αβ|ψ〉 = βα|ψ〉 = B̂Â|ψ〉. (1.22)

A necessary and sufficient condition for Â and B̂ to have a common complete set of eigen-
states is that Â and B̂ commute:

[Â, B̂] = ÂB̂ − B̂Â = 0. (1.23)

The uncertainty (variance) of an operator is

〈(∆Â)2〉 = 〈Â2〉 − 〈Â〉2. (1.24)

1To see this use |x〉 =
∫

dξ |ξ〉〈ξ|x〉 =
∫

dξ δ(ξ − x)|ξ〉, so (1.17) gives 〈x|p̂|p〉 = −i~〈x| ∂
∂x̂ |p〉 =

−i~
∫

dξ δ(ξ − x) ∂
∂ξ 〈ξ|p〉 = −i~ ∂

∂x〈x|p〉.
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The generalized uncertainty relation for two noncommuting observables is

(∆A)(∆B) ≥ 1

2
|〈[Â, B̂]〉| (1.25)

where ∆A =
√

〈(∆Â)2〉, ∆B =
√

〈(∆B̂)2〉.
There are many ways to prove this, see for example the proof in Zettili p. 95 which

invokes the Schwarz inequality. Here is an alternative approach. Define Â′ = Â − 〈Â〉 so
〈Â′〉 = 0,

〈(∆Â′)2〉 = 〈Â′2〉 = (∆A)2

and similarly for B̂′ = B̂ − 〈B̂〉. We note that [Â′, B̂′] = [Â, B̂].
Consider an arbitrary ket |ψ〉 and the quantity (Â′ + iλB̂′)|ψ〉 with λ real. The square

of the norm is

||(Â′ + iλB̂′)|ψ〉||2 = 〈ψ|(Â′ − iλB̂′)(Â′ + iλB̂′)|ψ〉
= 〈ψ|Â′2|ψ〉 + λ2〈ψ|B̂′2|ψ〉 + iλ〈ψ|[Â′, B̂′]|ψ〉
= λ2(∆B)2 + iλ〈ψ|[Â, B̂]|ψ〉+ (∆A)2

≥ 0.

The last term is the commutator of two Hermitian operators which is anti-Hermitian (it
has imaginary eigenvalues), so i times the commutator is a Hermitian operator. The above
expression is therefore a quadratic function of λ with real coefficients, and is therefore strictly
real. It is non-negative for all values of λ, and therefore must not have two different real
roots, since if that were the case the expression would have to change sign and be somewhere
negative. For this to be so the discriminant must be negative or zero which corresponds to

(∆A)(∆B) ≥ 1

2
|〈ψ|[Â, B̂]|ψ〉|.

Since this is true for any |ψ〉 we can write

(∆A)(∆B) ≥ 1

2
|〈[Â, B̂]〉|

as desired.
As an example of application of the commutation relation (1.25) consider x̂ and p̂. Their

commutator can be evaluated in the position representation as

〈ψ|[x̂, p̂]|ψ〉 = 〈ψ|(x̂p̂ − p̂x̂)|ψ〉

= −i~
∫
dxψ∗

(
x
∂

∂x
− ∂

∂x
x

)
ψ

= −i~
∫
dxψ∗

(
x
∂ψ

∂x
− ψ − x

∂ψ

∂x

)

= i~
∫
dxψ∗ψ

= 〈ψ|i~|ψ〉.

February 4, 2010 M. Saffman



8 1 Quantum Mechanics

Since |ψ〉 is an arbitrary ket we have [x̂, p̂] = i~ and using (1.25)

(∆x)(∆p) ≥ ~
2

which is the usual position-momentum form of the uncertainty relation.

1.1.8 Measurements

An arbitrary state is |ψ〉 =
∑∞

n=0 cn|n〉. The result of a measurement of the observable A is

〈Â〉 = 〈ψ|Â|ψ〉 =
∑

m

c∗m〈m|Â
∑

n

cn|n〉 =
∑

m

∑

n

c∗mcnan〈m|n〉 =
∑

n

|cn|2an. (1.26)

The probability of the measurement result being the eigenvalue an is

P (an) = |cn|2 = |〈n|ψ〉|2 = ||P̂n|ψ〉||2 = 〈ψ|P̂n|ψ〉. (1.27)

After Â has been measured and given the result an the new state of the system is

|ψ′〉 =
P̂n|ψ〉

||P̂n|ψ〉||
=

cn
|cn|

|n〉. (1.28)

A subsequent measurement of 〈Â〉 will return an with unit probability.

1.1.9 Evolution in time

Time evolution is governed by the Hamiltonian Ĥ and

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉. (1.29)

For a particle of mass m in the coordinate representation Ĥ = − ~2

2m
∇2 + V (r) and we get

the Schrödinger equation

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) + V (r)ψ(r, t). (1.30)

The formal solution for time evolution is

|ψ(t)〉 = Û (t, t0)|ψ(t0)〉

where the time evolution operator is

Û(t, t0) = exp

[
− i

~

∫ t

t0

dt′Ĥ(t′)

]

+

(1.31)

and [....]+ indicates time ordering of operator products:
[
Â(t1)...Â(tn)

]
+

= Â(t1)...Â(tn)

when t1 ≥ t2 ≥ ... ≥ tn.
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When Ĥ is not explicitly time dependent this simplifies to

Û (t, t0) = exp

[
− i

~
Ĥ(t− t0)

]
. (1.32)

The time evolution operator is unitary which means Û † = Û−1 so

Û †Û = Û Û † = Î. (1.33)

The time evolution of an initial state |ψ(t0)〉 can be determined explicitly by expanding in
energy eigenfunctions Ĥ |n〉 = En|n〉. Assume the initial state

|ψ(t0)〉 =
∑

n

〈n|ψ(t0)〉|n〉 =
∑

n

cn0|n〉

and the time dependent state

|ψ(t)〉 =
∑

n

〈n|ψ(t)〉|n〉 =
∑

n

cn(t)|n〉.

Plugging in to the Schrödinger equation gives

i~
∑

n

dcn
dt

|n〉 =
∑

n

Ĥcn|n〉 =
∑

n

Encn|n〉.

Projecting out the mth component by operating on both sides with 〈m| gives

i~dcm
dt

= Emcm

which is solved by

cm(t) = cm0e
−ıEm(t−t0)/~.

Thus

|ψ(t)〉 =
∑

n

cn(t)|n〉 =
∑

n

cn0e
−ıEn(t−t0)/~|n〉.

1.1.10 Schrödinger and Heisenberg pictures

There are several different ways of working with time evolution.
In the Schrödinger picture the state |ψ(t)〉S is a function of time while all observables

ÂS are constant. The state vector evolves according to the Schrödinger equation i~d|ψ〉S
dt

=

ĤS |ψ〉S and the expectation value of an operator at time t is

a(t) = 〈ÂS〉
= S〈ψ(t)|ÂS|ψ(t)〉S.

Here the subscripts S refer to the Schrödinger picture.
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We can cast this in a different form as follows. The expectation value of an operator at
time t is

a(t) = 〈ÂS〉
= S〈ψ(t)|ÂS|ψ(t)〉S
= 〈ψ(0)|Û †(t)ÂSÛ(t)|ψ(0)〉.

We can define a time dependent operator by ÂH = Û †(t)ÂSÛ (t), and time independent
states by |ψ〉H = |ψ(0)〉 such that

a(t) = H〈ψ|ÂH|ψ〉H .

This is the Heisenberg picture in which the kets are stationary but the operators evolve in
time. The equation of motion for the operator is found from

dÂH(t)

dt
=

d

dt

(
Û †(t)ÂSÛ (t)

)
+
∂ÂH

∂t

=
dÛ †(t)

dt
ÂSÛ(t) + Û †(t)ÂS

dÛ (t)

dt
+
∂ÂH

∂t

=

(
i

~
Û †Ĥ

)
ÂSÛ(t) + Û †(t)ÂS

(
−i
~
ĤÛ(t)

)
+
∂ÂH

∂t

=
i

~
[Ĥ, ÂH] +

∂ÂH

∂t

where the last lines follows from [Û , Ĥ] = 0, and for completeness we have included the
possibility of an explicit time dependence (not due to Û(t)) in ÂH. Thus

dÂH

dt
= − i

~
[ÂH, Ĥ] +

∂ÂH

∂t
, (1.34)

which is referred to as the Heisenberg equation (although it was first written down by Dirac).
This equation is usually more difficult to solve than the Schrödinger equation. However, it
provides a clear picture of the correspondence between quantum and classical mechanics.

1.1.11 Quantum - Classical correspondence and Ehrenfest’s theo-

rem

In classical mechanics we can describe a dynamical system by coordinates qj and momenta
pj . The Hamiltonian of the system is a function H(qj, pj) of the coordinates and momenta
which satisfy Hamilton’s equations

∂qj
∂t

=
∂H

∂pj
,

∂pj
∂t

= −∂H
∂qj

.

For a particle in a potential V (r), H = p2/2m+ V (r) so Hamilton’s equations give dr/dt =
p/m and dp/dt = −∇V (r).
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For any two dynamical quantities A,B we define the Poisson bracket {A,B} by

{A,B} =
∑

j

(
∂A

∂qj

∂B

∂pj
− ∂A

∂pj

∂B

∂qj

)
.

Clearly {A,B} = −{B,A}.
The time derivative of the quantity A is

dA

dt
=

∑

j

(
∂A

∂qj

∂qj
∂t

+
∂A

∂pj

∂pj
∂t

)
+
∂A

∂t

=
∑

j

(
∂A

∂qj

∂H

∂pj
− ∂A

∂pj

∂H

∂qj

)
+
∂A

∂t

= {A,H} +
∂A

∂t
. (1.35)

The similarity between the quantum equation (1.34) and the classical equation (1.35) is
remarkable. We see that the quantum equation of motion for the operator Â can be found
by writing down the classical equation for the dynamical variable A in terms of Poisson
brackets and making the substitution

{A,H} → − i

~
[ÂH, Ĥ]. (1.36)

Alternatively, we may think of quantum mechanics as the more fundamental theorem
which classical mechanics is an approximation to. In the limit of ~ → 0 the transformation

− i

~
[ÂH, Ĥ] → {A,H} (1.37)

reveals the limiting classical equation of motion. Note that while (1.36) should always lead
to a valid quantum equation, the substitution (1.37) may be meaningless since there are
quantum problems for which no classical analog exists. A prime example is the spin of an
electron.

Finally, we note that the time evolution of the expectation value of a quantum variable has
a close analogy with the time evolution of the corresponding classical quantity. This analogy
is already apparent in equations (1.34,1.35), which when written in terms of expectation
values is referred to as Ehrenfest’s theorem.

To see this note that for any differentiable operator function F̂ = F (q̂j, p̂j) we have the
following commutators

[q̂j, F̂ ] = i~
∂F̂

∂p̂j
, [p̂j , F̂ ] = −i~∂F̂

∂q̂j
.

From (1.34)with F̂ = Ĥ we obtain

d

dt
〈q̂j〉 =

〈
∂Ĥ

∂p̂j

〉
,

d

dt
〈p̂j〉 = −

〈
∂Ĥ

∂q̂j

〉
.
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Thus for a particle in potential V (r̂) with Ĥ = p̂2

2m
+ V (r̂) we get

d

dt
〈r̂〉 =

〈p̂〉
m
,

d

dt
〈p̂〉 = −〈∇V (r̂)〉. (1.38)

The first of Eqs. (1.38) is identical to the corresponding classical equation obtained by
putting 〈r̂〉 → r, 〈p̂〉 → p. However, the second equation differs from the corresponding
classical equation since, in general,

〈∇V (r̂)〉 6= ∇V (r)|r=〈r̂〉.

The difference betweens these two expressions is negligible provided the potential is close to
constant over the extent of the deBroglie wave packet of the particle. This condition must
be satisfied for the evolution of the expectation values of the quantum variables to agree
with the results of a classical description.

1.2 Principles of quantum mechanics

We can summarize the formalism given above in a small set of principles.

1. A physical system is associated with a Hilbert space EH containing ket vectors. At time
t the physical state is completely described by a ket |ψ(t)〉 residing in EH.

2. Any physical quantity A is associated with a Hermitian operator Â that acts on
kets in EH. The result of a measurement of A is always one of the eigenvalues an of Â.
The probability of measuring an is P (an) = ||P̂n|ψ〉||2 where P̂n = |n〉〈n| is the projec-

tor onto the ket |n〉. After the measurement the system will be in the new state |ψ′〉 = P̂n|ψ〉
||P̂n|ψ〉||

.

3. Time evolution is governed by the Hamiltonian according to i~d|ψ(t)〉
dt

= Ĥ |ψ(t)〉.

How to translate these simple rules into explicit procedures is often far from obvious, and
learning how to do so constitutes a course in Quantum Mechanics.


