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Do We Need Quantum Mechanics to Understand

Phase Transitions at Finite Temperature?

QAlthough quantum mechanics is essential to understand the existence of ordered

phases of matter (e.g., superconductivity and maghetism are genuine quantum
effects), it turns out that quantum mechanics does not influence asymptotic critical

behavior of finite temperature phase transitions:

—v2The decay time of tfemporal correlations for order-parameter fluctuations in dynamic

¢ (time-dependent) phenomena in the vicinity of critical point —> critical slowing down

d A __ Inquantum systems static and dynamic fluctuations are not independent because the

ih— = [A H} Hamiltonian determines not only the partition function, but also the time evolution of
dt ’ any observable via the Heisenberg equation of motion

1 » Thus, in quantum systems energy associated with the correlation time is also the
E.= h/Tc ~ |t| typical fluctuation energy for static fluctuations, and it vanishes in the vicinity of
a continuous phase transition as a power law
This condition is always satisfied sufficiently close to T, so that quantum effects are

E. <K kB 1¢ washed out by thermal excitations and a purely classical description of order parameter
fluctuations is sufficient to calculate critical exponents

QPhase transitions in classical models are driven only by thermal fluctuations,
as classical systems usually freeze into a fluctuationless ground state at 7= 0.
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Formal Definition of

Quantum Phase Transitions

[dQuantum systems have fluctuations driven by the Heisenberg uncertainty
principle even in the ground state, and these can drive interesting phase transitions

at 7=0.
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LAnN avoided level-crossing befween the ground and an excited state in a finite?
lattice could become progressively sharper as the lattice size increases, leading to
a nonanalyticity at § = g. in the infinite lattice limit.

DEFINITION: Any point of nonanalyticity in the ground state energy of the
infinite lattice system signifies quantum phase transition.

Othe nonanalyticity could be either the limiting case of an avoided level-crossing

or an actual level-crossing.
HAQPT is usually accompanied by a qualitative change in the nature of the
correlations in the ground state as one changes parameter in the Hamiltonian.
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Simple Theoretical Model I: Quantum

Criticality in Quantum Ising Chain (CoNb;O;)

Phys. Today 64(2), 29 (2011) Quantum Ising chain in the
transverse external magnetic field
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Each ion has two possible states:
SNUALD 0 |T> — +|T> 0 |\L> — —|l,>

R
é : é ’ The first term in the Hamiltonian prefers

Transverse magnetic field strength

that the spins on neighboring ions are parallel
‘% '% Quantum paramagnet

to each other, whereas the second allows
Ferromagnet quantum tunneling between the T and

4 2 > states with amplitude proportional to g
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Simple Theoretical Model IT: Quantum

Criticality in Dimer Antiferromagnet (TiCuCl;)

Experiment: Phys. Rev. Lett. 100, 205701 (2008)
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L TheAwo noncritical ground states of thg/dimer antiferromagnet have very different excitation spectra:

— H@S% s)e = (1) = WD)/V2  |t1)i = [11)

spin waves with nearly zero energy
and oscillations of the magnitude of £ (K)) z ikeri|y H®| [to)i = (IT4) + ‘N’»/\[
local magnetization " \/_ e ! t_1); = 1)
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How Quantum Criticality

Extends to Non-Zero Temperatures
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d For small g, thermal effects induce spin waves
that distort the Néel antiferromagnetic ordering.
For large g, thermal fluctuations break dimers in
the blue region and form quasiparticles called
triplons. The dynamics of both types of excitations
can be described quasi-classically.

LdQuantum criticality appears in the intermediate
orange region, where there is no description of the
dynamics in terms of either classical particles or
waves. Instead, the system exhibits the strongly
coupled dynamics of nontrivial entangled quantum
excitations of the quantum critical point g..

HdWavefunction at g=g. is a complex superposition
of an exponentially large set of configurations
fluctuating at all length scales — thus, it cannot be
written down explicitly due to long-range quantum
entanglement which emerges for a very large
number of electrons and between electrons
separated at all length scales.
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Scaling in the Vicinity of

Quantum Critical Points

T 1 physics is dominated by thermal excitations
of the quantum critical ground state

thermally
disordered
classical

thermally quantum critical quantum

disordered disordered disordered

kT = A o |r —1rc|"?
ordered QCP % .
0 atT =0 r

r T 0 Ie
: 1/T
Z:/D[cb] exp —/ dT/dDrﬁ[@)(r, 7)]
0

represents fluctuations of the order parameter and it depends on the imaginary time T
(I)(I', ’T) which takes values in the interval [0,1/T]; the imaginary time direction acts like an extra
dimension, which becomes infinite for [’ — ()

T=0: fing(G,h)=b"PF2)f. (bY@, b¥) G =|g— ge|/gc
T>0: fing(G, h,T)=0"PT)f (%G, %", b*T) 1)y, = v
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Example of Scaling Analysis:

Superconductor-Insulator QPT in Thm Films

R — h/4€ — 6450 () Phys. Today 51(11), 39 (1998)
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Experimental Example: Quantum Criticality in

Heavy Fermion Materials

HdQuantum criticality describes the collective fluctuations of matter undergoing a
continuous phase transition at zero temperature.
dHeavy-fermion metals have in recent years emerged as prototypical systems to

study quantum critical points.
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QKey characteristics of of both
CeCusoAUp; and YbRh,Si, is the
divergence of the effective charge-
carrier mass at the quantum critical
point.

Flgure 1 Quantum critical points in HF metals. a, AF ordering temperature Ty, versus
Au concentration x for CeCus_,Au, (ref. 7), showing a doping-induced QCP.

b, Suppression of the magnetic ordering in YbRh,Si; by a magnetic field. Also shown
is the evolution of the exponent & in A p=[p(T) — pg] oc T*, within the
temperature—field phase diagram of YbRh.Si; (ref. 55). Blue and orange regions
mark o = 2 and 1, respectively. ¢, Linear temperature dependence of the electrical
resistivity for Ge-doped YbRh,Si; over three decades of temperature (ref. 55),
demonstrating the robusiness of the non-Fermi-liquid (NFL) behaviour in the
quantum-critical regime. d, Temperature-versus-pressure phase diagram for
CePd,Si;, illustrating the emergence of a superconducting phase centred around the
(1CP. The Néel (7,,) and superconducting (T} ordering temperatures are indicated by
filled and open symbaols, respectively™.
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Experimental Example: Quantum Criticality in

High-Temperature Cuprate Superconduc’rors
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Experimental Example: Quantum Criticality in

Iron-Based Pnictide Superconductors
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"bare” quantum criticality is preempted by another
phase - typically an unconventional superconductivity
with spatially anisotropic Cooper pair wavefunction
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Historical Example: Anderson Localization
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Order Parameter and Scaling
in Anderson Localization

Furophys. Lett., 62 (1), pp. 76-82 (2003)

Typical medium theory of Anderson localization:
A local order parameter approach
to strong-disorder effects
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Fig. 1 — Typical and average DOS as a function of disorder W, for a three-dimensional cubic lattice
at the band center (w = 0). Results from exact numerical calculations (circles) are compared to the
predictions of TMT (for TDOS, full line) and CPA (for ADOS, dashed line). Finite-size scaling of the
numerical data in the critical region W = 1.17-1.58, and sizes [ = 4-12 is shown in the inset, where
peyp (W, L)/ pryp(We, L) is plotted as a function of &(W)/L, and &(W) = 0.5|(W. — W) /W,|™" is the

correlation length in units of the lattice spacing. The numerical data are consistent with 3 = v = 1.58.
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Historical Example: Mott-Hubbard

Metal-Insulator Transition
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Nature 415, 39 (2002)

Experimental Example: Superfluid-Mott

Insulator QPT in a Gas of Ultracold Atoms

3D

Superfluid state
with coherence —
Mott insulator
state without
coherence —
superfluid state
after restoring the
coherence

Switch off the optical lattice beams, so that the localized wavefunctions at
each lattice site can expand and interfere with each other. They form a
multiple matter wave interference pattern which reveals the momentum

distribution of the system.

2nms 6ns 10 s 14ms
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18 ms

The sharp and discrete peaks observed
directly prove the phase coherence
across the entire lattice

3D lattice
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Theoretical Explanation of Superfluid-Mott

Insulator QPT in a Gas of Ultracold Atoms

Bose-Hubbard Hamiltonian for periodic lattice potential
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U/J < ge

kinetic energy term dominates:
Weakly interacting bosonic gas

-> Superfluidity

# Atoms are delocalized
over the entire lattice

'wﬁ.}m(f‘a: 10)

i=l

* Coherence,
manybody state can be described
by a macroscopic wavefunction

(a)#0

% Coherent state
Superposition with a Binomial atom
number distribution per lattice site
-> number fluctuations

™ R E; n=2
be X

» Gapless excitation spectrum

U/J>gc

interaction energy term dominates:

Strongly corrolated bosonic system

-> Mott insulator

» Atoms are completely localized
to lattice sites

)= TT@ Y 0)

® Mo coherence, no
macroscopic wavefunction

®* Fock state
with a vanishing number
fluctuation per lattice site

» Excitation spectrum has an
energygapA=U
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Quantum criticality
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A phase transition brought on by quantum fluctuations at absolute zero
may seem like an abstract theoretical idea of little practical consequence.
But it is the key to explaining a wide variety of experiments.
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Quantum criticality in heavy-fermion metals

Quantumn criticality describes the collective fluctuations of matter undergoing a second-order phase
transition at zero temperature. Heavy-fermion metals have in recent years emerged as prototypical
systems to study quantum critical points. There have been considerable efforts, both experimental and
theoretical, that use these magnetic systems to address problers that are central to the broad
understanding of strongly comelated guantum matter. Here, we summarize some of the basic issues,
including the extent to which the gquantum criticality in heavy-fermion metals goes beyond the standard
theory of order-parameter fluctuations, the nature of the Kondo effect in the gquanturm-cntical regime, the
non-Femi-liquid phenomena that accompany quantum criticality and the interplay between quantum

criticality and unconventional superconductivity.
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2 MARCH 2012 VOL 335 SCIENCE
Observation of Quantum Criticality with
Ultracold Atoms in Optical Lattices

Xibo Zhang,* Chen-Lung Hung, Shih-Kuang Tung, Cheng Chin*

Quantum criticality emerges when a many-body system is in the proximity of a continuous

phase transition that is driven by quantum fluctuations. In the quantum critical regime, exotic,
yet universal properties are anticipated; ultracold atoms provide a clean system to test these
predictions. We report the observation of quantum criticality with two-dimensional Bose gases

in optical lattices. On the basis of in situ density measurements, we observe scaling behavior of
the equation of state at low temperatures, locate the quantum critical point, and constrain the
critical exponents. We observe a finite critical entropy per particle that carries a weak dependence
on the atomic interaction strength. Our experiment provides a prototypical method to study
quantum criticality with ultracold atoms.
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