
Problems in Physics 
wi th Many Scales of Length 

Physical systems as varied as magnets and fluids are ahke J'n having 

fluctuations in structure over a vast range of sizes. A novel method 

called the renormahzation group has been invented to explain them 

One of the more conspicuous prop­
erties of nature is the great di­
versity of size or length scales in 

the str ucture of the world. An ocean, for 
example, has c urrents that persist for 
tho usands of kilometers and has tides 
of global extent; i t  also has waves that 
range in s ize from less than a centimeter 
to several meters; at m uch finer resolu­
tion seawater must be regarded as an 
aggregate of molec ules whose charac­
teristic scale of length is roughly 1 0-8 
centimeter. From the smallest structure 
to the largest is a span of some 1 7  or­
ders of magnitude.  

In general ,  events distinguished by a 
great d isparity in size have little influ­
ence on one another; they do not com­
m unicate, and so the phenomena asso­
c iated with each scale can be treated 
independently.  The interaction of two 
adjacent water molec ules is much the 
same whether the molecules are in the 
Pacific Ocean or in a teapot. What is 
eq ually important, an ocean wave can 
be described quite acc urately as a dis­
turbance of a continuous fluid, ignoring 
ent irely the molec ular structure of the 
liquid .  The success of almost all practi­
cal theories in physics depends on isolat­
ing some limited range of length scales. 
If it were necessary in the eq uations of 
hydrodynamics to spec ify the motion of 
every water molecule, a theory of ocean 
waves would be far beyond the means of 
20th-cent ury science. 

A class of phenomena does ex' ist, 
however, where events at many scales of 
length make contr ibutions of equal im­
portance. An example is the behavior of 
water when it is heated to boil ing under 
a press ure of 2 1 7  atmospheres. At that 
pressure water does not boil until the 
temperat ure reaches 647 degrees Kel­
vin. This combination of pressure and 
temperature defines the cr itical point of 
water, where the distinction between liq­
uid and gas disappears; at higher pres­
sures there is only a single, undifferenti­
ated fluid phase, and water cannot be 
made to boil no matter how much the 

158 

by Kenneth G. Wilson 

temperature is raised. Near the criti­
cal point water develops fluctuations in 
density at all possible scales. The fluctu­
ations take the form of drops of l iquid 
thoroughly interspersed with b u bbles of 
gas, and there are both drops and b u b­
bles of all sizes from single molecules up 
to the volume of the specimen. Precisely 
at the critical point the scale of the larg­
est fl uctuations becomes infinite, but the 
smaller fluctuations are in no way di­
minished .  Any theory that describes wa­
ter near its critical point must take into 
account the entire spectrum of length 
scales. 

M ul tiple scales of length complicate 
many of the outstanding problems in 
theoretical physics and in certain other 
fields of study. Exact solutions have 
been found for only a few of these prob­
lems, and for some others even the best­
known approximations are unsatisfac­
tory. In the past decade a new method 
called the renormalization group has 
been introduced for dealing with prob­
lems that have m ultiple scales of length .  
I t  has  by no means made  the problems 
easy, but  some that have resisted all oth­
er approaches may yield to this one. 

The renormalization group is not a 
descriptive theory of nature but a gener­
al method for constr uct ing theories. It 
can be applied not only to a fluid at the 
critical point but also to a ferromagnetic 
material at the temperature where spon­
taneous magnetization first sets in, or to 
a mixture of l iquids at the temperat ure 
where they become fully miscible, or to 

an alloy at the temperat ure where two 
kinds of metal atoms take on an orderly 
d istr ibution. Other problems that have a 
su itable form include turbulent flow, the 
onset of superconductivity and of su­
perfluid ity, the conformation of poly­
mers and the binding together of the e le ­
mentary particles called quarks. A re ­
markable hypothesis that seems to be 
confirmed by work with the renormali­
zation group is that some of these phe­
nomena, which superficially seem quite 
distinct, are identical at a deeper lev­
el. For example, the critical behavior 
of fluids, ferromagnets, liquid mixtures 
and alloys can all be described by a sin­
gle theory. 

The most convenient context in which 
to discuss the operation of the renor­

malization group is a ferromagnet, or 
permanent magnet. Ferromagnetic ma­
terials have a critical point called the 
C urie point or the Curie temperature, 
after P ierre Curie, who studied the ther­
modynamics of ferromagnets at about 
the turn of the century. For iron the 
Curie temperat ure is \,044 degrees K. 
At higher temperatures iron has no 
spontaneous magnetization. As the iron 
is cooled the magnetization remains 
zero until the Curie temperature is 
reached, and then the material abruptly 
becomes magnetized.  If the temperature 
is reduced further, the strength of the 
magnetization increases smoothly .  

Several properties of ferromagnets 
besides the magnet izat ion behave oddly 

MULTIPLE SCALES OF LENGTH characterize the patterns that emerge when a ferromag­
netic solid is cooled to the temperature at which it becomes spontaneously magnetized. Each 
square represents the magnetic moment associated with a single atom in the solid, and each 
moment is assumed to have only two possible orientations, labeled "up" (black sqllares) and 
"down" (opell sqllares). At high temperature (top) the orientation of the magnetic moments is 
essentially random, and so there is only short-range order in the pattern. As the temperature is 
reduced (middle) somewhat larger patches in which most of the magnetic moments are lined 
np in the same direction begin to develop. When the temperature reaches a critical value called 
the Curie temperature, or Tc (bottom), these patches expand to infinite size; significantly, 
however, fluctuations at smaller scales persist. As a result all scales of length must be included 
in a theoretical description of the ferromagnet. This simulation of a ferromagnet was carried 
out with the aid of a computer by Stephen Shenker and Jan Toboch.nik of Cornell University. 

© 1979 SCIENTIFIC AMERICAN, INC



159 

© 1979 SCIENTIFIC AMERICAN, INC



near the C ur ie point. Another property 
of interest is the magnetic susceptibility, 
or the change in magnetization induced 
by a small applied field. Well above the 
C urie point the susceptibility is small 
beca use the iron cannot retain any mag­
netization; well below the C urie temper­
ature the susceptibility is small again be­
ca use the material is already magnetized 
and a weak applied field cannot change 
the state of the system very much. At 
temperatures close to 1 ,044 degrees, 
however, the susceptibil ity rises to a 
sharp peak, and at the C urie point itself 
the susceptibility becomes infinite. 

The ultimate source of ferromagnet­
ism is the quantum-mechanical spinning 
of electrons. Because each electron ro­
tates it has a small magnetic dipole mo­
ment; in other words, it acts as a magnet 
with one north pole and one south pole. 
How the spin of the e lectron gives rise to 
the magnetic moment will not concern 
me here. It is sufficient to note that both 
the spin and the magnetic moment can 
be represented by a vector, or arrow, 
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which defines the direction of the elec­
tron's magnetic field. 

A real ferromagnet has a complex 
atomic str ucture, but all  the essential 
properties of the system of spins can be 
il lustrated by a quite simple model. 
Indeed, I shall describe a model that 
includes no atoms or other material par­
ticles b ut consists only of spin vectors 
arranged in a lattice. For the sake of 
simplicity I shall deal with a two-di­
mensional'lattice : a recti linear grid of 
uniformly spaced lines in a plane, with 
a spin vector at each intersection of the 
grid lines. Furthermore, I shall assume 
that each spin can point in only two 
possible directions, designated up and 
down. The model lattice is said to be 
magnetized whenever more than half of 
the spins point in the same direction. 
The magnetization can be defined as the 
number of up spins minus the number of 
down spins. 

Every electron has the same spin 
and the same magnetic dipole moment.  
What d ist inguishes a ferromagnet from 
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MODEL OF A FERROMAGNET consists of vectors, or arrows of fixed length, arranged at 
the sites of a lattice. Each vector represents the spin angular momentum and the magnetic mo­
ment of a single electron, and it can be oriented either up or down. Nearest-neighbor lattice 
sites are coupled in such a way that adjacent spin vectors are likelier to be parallel than anti­
parallel. From the strength of the coupling, which declines as the temperature increases, a prob­
ability, P, can be assigned to every possible configuration of the spin vectors. All the configura­
tions of a lattice made up of just four sites are shown here. The net magnetization, M, of each 
configuration is easily calculated: it is the number of up spins minus the number of down spins. 

··The magnetization of the model at any given temperature is found by multiplying the magneti-
zation of. each configuration by the probability of that configuration, then adding up all the re­
sults. The p!'�J1abilities shown were calculated for a coupling strength of .5, which corresponds 
to a temperature (in arbitrary units) of 2. The model is called the two-dim ensional Ising model. 
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other materials is a coupling between 
nearby spins that makes them tend to 
l ine up in the same direction. This ten­
dency can be stated more precisely by 
pointing out that the total energy of any 
two adjacent spins is smaller when the 
spins are parallel than it is when they are 
anti parallel. The interaction responsible 
for the coupling of the spins has a short 
range, which is reflected in the model by 
specifying that only nearest-ne ighbor 
spins are co upled to each other. In the 
two-dimensional rectil inear lattice each 
spin is influenced by four nearest ne igh­
bors; no other spins have any direct ef­
fect on it. 

From the nature of the interaction be­
tween spins in a ferromagnet one 

might well  predict that all the spins 
would always be parallel and the mate­
rial would always have its maxim um 
magnetization. That is the state of low­
est energy, and in the absence of any 
perturbing effects it would be the fa­
vored state . In a real ferromagnet, how­
ever, there is one perturbation that can­
not be neglected:  the thermal motion of 
the atoms and the electrons. At any tem­
perature above absolute zero thermal 
excitations of the solid randomly flip 
some of the spins so that the direction of 
the spin vector is reversed, even when 
reversing the spin puts the magnet in a 
state of higher energy. Hence it is no 
surprise that the magnetization decreas­
es as the temperature increases:  that re­
lation simply reflects increasing thermal 
disruption. What remains c urious is that 
the magnetization is not a smooth func­
tion of the temperature b ut instead dis­
appears abruptly at a certain finite tem­
perature, the Curie point.  

Competition between the tendency 
toward a uniform spin orientation and 
the thermal introduction of disorder can 
readily be incorporated into a model of 
a ferromagnet. The strength of the cou­
pling between·adjacent spins is given by 
a number, K. that m ust be specified in 
the design of the model. Thermal effects 
are included simply by making K in­
versely proportional to the temperature. 
With the appropriate units of measure­
ment the coupling strength can be set 
equal to the reciprocal of the tempera­
t ure, a relation expressed by the eq ua­
tion K = 1 IT. 

What the coupling strength deter­
mines is the probability that two adja­
cent spins are parallel. When the tem­
perat ure is zero, there are no thermal 
effects and adjacent spins are certain to 
be parallel; the probability is equal to I 
and the coupling strength is infinite. At 
an infinite temperat ure the coupling 
strength falls to zero, so that the spins do 
not interact at all. Hence each spin is 
free to choose its d irection randomly 
and is independent of its ne ighbors. The 
probability that two spins are parallel is 
1 /2,  and so is the probability that they 
are anti parallel. The region of interest, 

© 1979 SCIENTIFIC AMERICAN, INC



of co urse, lies between these extremes of 
temperature, where the probabil ity of 
the adjacent spins' lining up m ust always 
have a val ue between 1!2 and 1 .  

Suppose there is a large two-dimen­
sional lattice of spins and that some 

one spin in it is  artificially held fixed in 
the up orientation. What is the effect 
on the other spins? The effect on the 
spins at the four adjacent lattice sites is 
easy to imagine: since they are d irectly 
coupled to the fixed spin, they will have 
a greater-than-even probability of point­
ing up.  The extent to which the probabil­
ity is biased depends on the value of K, 
which is determined in turn by the tem­
perature. 

More d istant spins have no direct in­
teraction with the fixed spin, but none­
theless the infl uence of the fixed spin 
does not end with the immediate neigh­
bors. Because the nearest-neighbor spins 
tend to point up more often than down 
they create a similar bias in their own 
nearest neighbors. In this way the d is­
t urbance can propagate over a large 
area of the lattice. The range of influ­
ence of a single fixed spin can be mea­
sured by observing the orientation of 
many spins that are all at the same 
large d istance from the fixed one. If re­
versing the orientation of the fixed spin 
from up to down increases the number 
of down spins in the d istant population, 
then the spins are said to be correlated. 
The maximum d istance over which such 
a correlation can be detected is called 
the correlation length. Regions separat­
ed by a distance greater than the correla­
tion length are essentially independent. 

In a lattice at very high temperature 
the correlation length is close to zero. 
The distribution of spins is nearly ran­
dom, and so the average number of up 
and down spins must be equal; in other 
words, the magnetization is zero. As the 
temperature falls (and the coupling 
strength increases) correlations over 
larger d istances begin to appear . They 
take the form of spin fluctuations, or 
patches of a few spins each that mostly 
point in the same d irection. Over any 
large area the magnetization is still zero, 
but the structure of the lattice is m uch 
d ifferent from what it was near infinite 
temperature. 

As the temperature approaches the 
C urie point the correlation length grows 
rapidly. The basic interactions of the 
model have not changed; they still con­
nect only adjacent lattice sites, but long­
range order has emerged from the short­
range forces. What is most significant in 
the growth of the correlation length is 
that as the maxim um size of the spin 
fluctuations increases, the smaller fl uc­
tuations are not suppressed; they merely 
become a finer structure superimposed 
on the larger one. The largest fluctua­
tions are not areas of uniform spin align­
ment; they include many smaller fl uctu­
ations and can be d istinguished only be-
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MAGNETIZATION of a ferromagnet has a sudden onset at the Curie temperature. Above 
this temperature the average numbers of up spins and down spins are equal and so the magn eti­
zation is zero. At any temperature below the Curie point two states of magnetization are possi­
ble, depending on whether the up spins or the down spins are in the majority; in the absence of 
an external magnetic field the two states are equally likely. The susceptibility of a ferromagn et 
measures the change in magnetization induced by an arbitrarily small applied magnetic field. 
At the Curie point the susceptibility becom es infinite. Near the Curie point a small change in 
either the temperature or tbe external field gives rise to a large change in the magn etization. 

cause they have an overall excess of one 
spin d irection. Thus an ocean of spins 
that are mostly up may have within it an 
island of spins that are mostly down, 
which in turn s urrounds a lake of up 
spins with an islet of down spins. The 
progression continues to the smallest 
possible scale : a single spin. 

When the temperature is precisely 
equal to the C urie temperature, the cor­
relation length becomes infinite. Any 
two spins are correlated,  no matter what 
the d istance between them is. Neverthe­
less, fl uctuations persist at all smaller 
scales of length. The system remains un­
magnetized, but it is exquisitely sensi­
tive to small perturbations. For exam­
ple, holding a single spin fixed in the up 
orientation creates a disturbance that 
spreads throughout the lattice and gives 
the entire system a net magnetization. 

Below the C urie temperature the sys­
tem becomes magnetized even in the ab­
sence of an outside perturbation, but 
there is no immediate change in the ap­
pearance of the lattice. Smaller-scale 
fl uctuations persist; they are remnants 
of the lakes and islets of opposite spin 
d irection. Merely by looking at the lat­
tice one cannot detect the magnetiza­
tion. Only when the system is cooled 
further does the bias become obvious, as 
the increasing coupling strength coerces 
more of the spins into conformity with 
tpe majority. At zero temperature com­
plete uniformity is attained .  

In fluids the fluctuations in density 

near the critical point are closely analo­
gous to the fluctuations in spin d irection 
observed in ferromagnets. In fl uids, 
however, the presence of fluctuations at 
all possible scales of length can be ob­
served directly. When the correlation 
length first reaches a few thousand ang­
strom units, which is comparable to the 
wavelength of light, the fluctuations be­
gin to scatter l ight strongly and the fl uid 
turns milky, a phenomenon called crit­
ical opalescence. Significantly, when the 
temperature comes still closer to the 
critical point and the maximum scale of 
the fluctuations becomes m uch larger 
(millimeters or centimeters), the critical 
opalescence is not reduced, indicating 
that the smaller fluctuations persist. The 
same phenomenon takes place in spin 
systems, but because ferromagnetic ma­
terials are not transparent to l ight it can­
not be demonstrated as readily. The crit­
ical opalescence of ferromagnets has 
been detected, however, in the scattering 
of neutrons from a magnetic material 
near the C urie temperature . 

The model I have been describing is 
not my own invention. It is a version 

of one introduced in the 1920's by the 
German physicists Wilhelm Lenz and 
Ernest Ising, and it is  now called the 
Ising model. The properties of a system 
of Ising spins on a two-dimensional lat­
tice are known in complete detail be­
cause the model was solved exactly in 
1944 by Lars Onsager of Yale Universi-
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ty. Since then sol utions have also been 
found for several other two-dimension­
al models (whereas no three-dimension­
al model has yet been solved exactly) .  
Nevertheless, the problems of describ­
ing two-d imensional systems are far 
from trivial. In what follows I shall 
apply the methods of the renormaliza­
tion group to the two-dimensional Is ing 
model as if it were a problem still out­
standing, and Onsager's sol ution will 
serve as a check on the results. 

What does it mean to solve or to un­
derstand a model of a physical system? 
In the case of the Ising system the micro­
scopic properties are known completely 
from the outset, since they were speci­
fied in building the model. What is need­
ed is a means of predicting the macro­
scopic properties of the system from the 
known microscopic ones. For example, 
a formula giving the spontaneous mag­
netization, the susceptibil ity and the 
correlation length of the model as a 
function of temperature would contrib­
ute greatly to understanding. 

It is not notably difficult to calc ulate 
the macroscopic properties of any given 
config uration of the spins in an Ising 
model. The magnetization, for example, 
can be determined simply by counting 
the number of up spins and the n umber 
of down spins and then subtracting. No 
one config uration of the spins, however, 
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determines the macroscopic properties 
of the system. Instead all possible con­
fig urations contribute to the observed 
properties, each in proportion to its prob­
ability at a given temperat ure. 

In principle the macroscopic proper­
ties could be calculated directly as the 
sum of all the separate contributions. 
First the magnetization would be found 
for each configuration and then the cor­
responding probability.  The actual mag­
netization would be obtained by m ulti­
plying each of these pairs of numbers 
and adding up all the results. The sus­
ceptibility and the correlation length 
could be found by proced ures that are 
not much more elaborate. The common 
element in all these calc ulations is the 
need to determine the probabilities of 
all possible config urations of the spins. 
Once the d istr ibution of probabilities is 
known the macroscopic properties fol­
low directly, 

As I pointed out above, the probabili­
ty of any two adjacent spins' being par­
allel is determined solely by the cou­
pling strength K, which I have defined as 
the reciprocal of the temperature. If the 
probability of two neighboring spins in 
isolation being parallel is denoted p, 
then the probability of their being anti­
parallel must be 1 - p. From these two 
values alone the relative probability of 
any spec ified configuration of a lattice 

1 x 1 2 x 2 3 x 3 4 x 4 5 x 5 6 x 6 7 x 7 8 x 8 9 x 9 10 x 10 
LATTICE S IZE 

NUMBER OF SPIN CONFIGURATIONS rises steeply as the size of a lattice grows. For a 
system of II spins, each of which has two possible values, the number of configurations is equal 
to 2n. When the lattice is large, it becomes impractical to calculate the probability of all the con­
figurations. The limit of practical computation is a lattice somewhat larger than the six-by-six 
array of 36 spins. In order to observe the critical behavior of the system near the Curie temper­
ature an array of about lOO-by-lOO spins would be needed, which has 210,000 configurations. 

164 

can be evaluated. All that is required is 
to multiply together the separate proba­
bilities for every nearest-neighbor pair 
of spins, in each case taking the value as 
p when the spins are parallel and as 
I - p when they are anti parallel .  

Consider a spin system that is made up 
of j ust four spins arranged at the 

corners of a square. Such a lattice has 
four nearest-neighbor couplings, corre­
sponding to the four sides of the square. 
Each coupling is considered in t urn and 
is assigned a probability of e ither p or 
I - p accord ing to whether the spins are 
parallel or antiparallel; then the four 
separate probabilities are m ultiplied. In 
the config uration with all fo ur spins ori­
ented up all four pairs are parallel, and 
so the relative probability is given by the 
prod uct p X P X P X p. If three spins are 
up and one is down, the relative proba­
bility is p X p X ( I - p) X (1 - pl. 

The calculation must be carried out 
for every configuration of the spins; for 
a system of four spins there are 1 6  con­
fig urations. A final step is to convert 
the relative probabilities into absol ute 
ones by adj usting each value so that the 
total of all 1 6  val ues is eq ual to exact­
ly 1 .  Since the temperature determines 
the coupling strength and the coupling 
strength in turn determines the values of 
p and 1 - p, the entire seq uence of 1 6  
calculations would also have t o  b e  re­
peated for every temperature of interest. 

This plan of attack on the Ising model 
is ambitious but impractical. If the prob­
ability of every spin config uration could 
be calculated, the magnetization and the 
other macroscopic properties could be 
eval uated for any specified temperature. 
The problem lies in the number of spin 
config urations. For a system made up of 
11 spins, each of which can take on two 
values, there are 2n possible configura­
tions. This exponential function grows 
rapidly as 11 increases. As I have men­
tioned,  fo ur spins have 24, or 1 6, config­
urations. A three-by-three block of nine 
spins has 512 configurations and a four­
by-four block has 6 5 , 5 36. The practical 
limit of computation is not much larger 
than a six-by-six block of 36 spins, for 
which there are approximately 7 X 1 0  to 
con fig ura tions. 

What size lattice would be needed in 
order to determine the critical proper­
ties of the two-dimensional Is ing model? 
The array must be at least as large as the 
largest fluct uations observed at the tem­
perat ure of interest. At a temperature 
reasonably close to the C urie point the 
correlation length, in units of the lattice 
spacing, might be about 1 00 and the 
largest fl uctuations would cover about 
1002, or 10,000, lattice sites. A block of 
spins that large has 2 10,000 possible con­
figurations, a number that is somewhat 
greater than 1 03,00°. The fastest comput­
er conceivable could not carry out s uch 
a calcu lation. Even if the computer had 
been working continuo usly since the 
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"big bang" with which the universe be­
gan, it would not yet have made a signifi­
cant start on the task. 

The need to carry out an almost end­
less enumeration of spin configurations 
can be circumvented for two special 
conditions of the lattice . When the tem­
perature of the system is zero (so that 
the coupling strength is infinite), all but 
two of the configurations can be neglect­
ed.  At zero temperature the probability 
that a pair of spins will be anti parallel 
falls to zero, and therefore so does the 
probability of any configuration that in­
cludes even one antiparallel pair. The 
only configurations that do not have 
at least one anti parallel pair are those 
in which all the spins are up or all are 
down. The lattice is certain to assume 
one of these configurations, and all oth­
er configurations have zero probability. 

At infinite temperature, where the 
coupling strength is zero, the probability 
d istribution is also much simplified. Ev­
ery spin is then independent of its neigh­
bors and its d irection at any instant can 
be chosen at random. The result is that 
every configuration of the lattice has 
equal probability. 

Through these two shortcuts to the 
determination of the probability distri­
bution it is a trivial exercise to calculate 
exactly the properties of the Ising model 
at absolute zero and at infinite tempera­
ture. Acceptable methods of approxi­
mation are also available for any tem­
perature low enough to be considered 
close to zero or high eno ugh to be con­
sidered close to infinity. The trouble­
some region is between these extremes; 
it corresponds to the region of the crit­
ical point. Until recently there was no 
practical and direct method of calculat­
ing the properties of a system arbitrarily 
close to the critical point. The renormal­
ization group provides such a method. 

The essence of the renormalization­
group method is to break a large 

problem down into a sequence of small­
er and more manageable stages. Instead 

RENORMALIZATION-GROUP approach 
to a model ferromagnet consists in breaking 
down an intractable problem with multiple 
scales of length into a sequence of smaller 
problems, each of wbicb is confined to a single 
scale of length. One version of the renormali­
zation-group method, called the block-spin 
transformation, has three steps. First the lat­
tice is divided into blocks of a few spins each, 
in this case nine. Then each block is replaced 
by a single spin whose value is the average of 
all the spins in the block; here the average is 
determined by majority rule. In this way a 
new lattice is created, with three tim es the 
original lattice spacing and one-third the den­
sity of spins. Finally the original scale is re­
stored by reducing all dim ensions by a factor 
of 3. The procedure must be carried out for 
all configurations of a few spins in the origi­
nal lattice, so that a probability can be found 
for every configuration of the block spins. 
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P ROBABILITIES OF NEAREST-N EIGHBOR CON FIG U RATIONS IN O RIGINAL LATTICE 

Lj ------1' L- r-1 � � 
P = .3655 P = .1345 P = .1345 P = .3655 

P ROBABILITIES OF SIX-SPIN CON FIG U RATIONS IN ORIGINAL LATTICE 

WA P = .2943 � P = .0147 • P = .0020 � P = .0007 

� P = .0398 � P = .0054 • P = .0002 � P = .0020 1--'\ 

VA P = .0147 � P = .0020 � P = .0007 � P = .0054 

¥ :� __ .l. � P = .0054 � P = .0147 � P = .0020 � P = .0398 

� P = .0054 � P = .0020 � P = .0054 ViA P = .0020 

I 
P = .0007 � P = .0007 VA· P = .0007 � P = .0007 

P = .0020 

� 
P = .0020 VA P = .0020 � P = .0020 

� P = .0007 P = .0147 

� 
P = .0007 

I 
P = .0147 

- P = .0147 � P = .0007 P = .0147 P = .0007 

- P = .0020 � P = .0020 - P = .0020 

� 
P = .0020 

� P = .0007 • P = .0007 � P = .0007 P = .0007 

\1& P = .0020 

;: 
P = .0054 V4 P = .0020 

� 
P = .0054 

� P = .0398 P = .0020 � P = .0147 P = .0054 

� P = .0054 V4 P = .0007 � P = .0020 

= 
P = .0147 

V4 P = .0020 

V4 
P = .0002 VA P = .0054 P = .0398 

'� P = .0007 

V4 
P = .0020 � P = .0147 � P = .2943 

'\\1 -: --;If 
t t t t � � � t P = .4302 P = .0697 P = .0697 P = .4302 

P ROBABILITIES OF N EAREST-NEIGHBOR BLOCK -SPIN CON FIGURATIONS 

166 

© 1979 SCIENTIFIC AMERICAN, INC



of keeping track of all the spins in a re­
gion the size of the correlation length, 
the long-range properties are ded uced 
from the behavior of a few q uantities 
that incorporate the effects of many 
spins. There are several ways to do this. 
I shall describe one, the block-spin tech­
nique, in which the principles of the 
method are revealed with particular 
clarity. It was introduced by Leo P. 
Kadanoff of the University of Chicago 
and was made a practical tool for cal­
culations by Th. N iemeijer and J .  M. J. 
van Lee uwen of the Delft University of 
Technology in the Netherlands. 

The method has three basic steps, 
each of which must be repeated many 
times. First the lattice is divided into 
blocks of a few spins each; I shall em­
ploy square blocks with three spins on a 
side, so that each block includes nine 
spins. Next all the spins in the block are 
averaged in some way and the entire 
block is replaced by a single new spin 
with the value of the average. Here the 
averaging can be done by a simple pro­
ced ure: by following the principle of 
majority rule. If five or more of the orig­
inal spins are up, the new spin is also up; 
otherwise it is down. 

The result of these two operations is 
to create a new lattice whose fundamen­
tal spacing is three times as large as that 
of the old lattice. In the third step the 
original scale is restored by reducing all 
dimensions by a factor of 3 .  

These three steps define a renormali­
zation-group transformation. Its effect 
is to eliminate from the system all fluc­
tuations in spin d irection whose scale is 
smaller than the block size. In the model 
given here any fluctuation of the spins 
over a range of fewer than three lattice 
units will be smeared out by the averag­
ing of the spins in each block. It is as if 
one looked at the lattice through an out­
of-foc us lens, so that the smaller fea­
t ures are blurred but the larger ones are 
unaffected.  

It is not enough to carry out this  pro­
ced ure for any one configuration of the 
original lattice; once again what is 
sought is a probability distribution. S up­
pose one considers only a small region 
of the initial lattice, consisting of 36 
spins that can be arranged in four 
blocks. The spins in this region have 236, 

or about 70 billion, possible configura­
tions. After the block-spin transforma­
tion has been applied the 36 original 
spins are replaced by four block spins 
with a total of 16 configurations. I t  is  
j ust within the limit of practicality to 
compute the probability of each of the 
configurations of the original 36 spins. 
From those n umbers the probabilities of 
the 16 block-spin configurations can 
readily be determined .  The calculation 
can be done by sorting all the configu­
rations of the original lattice into 1 6  
classes according to which configura­
tion of the block spins results in each 
case from applying the principle of ma­
jority rule.  The total probability for any 
one configuration of the block spins is 
then found by adding up the probabili­
ties of all the configurations of the origi­
nal lattice that fall into that class. 

It  may well seem that nothing is 
gained by this proced ure. If  the com­
plete probability d istr ibution can be cal­
culated for a system of 36 spins, nothing 
new is learned by condensing that sys­
tem into a smaller lattice of four block 
spins. Near the critical point it is still 
necessary to consider a m uch larger lat­
tice, with perhaps 1 0,000 spins instead 
of 36, and the probability d istr ibution 
for the block spins generated from this 
lattice cannot be calc ulated because 
there are far too many configurations. 
As it turns o ut, however, there is a meth­
od for extracting useful information 
from a small set of block spins. It  is a 
method for observing the behavior of 
the system over a large region without 
ever dealing explicitly with the configu­
rations of all the spins in that region. 

Each block spin represents nine spins 
in the original lattice. The complete set 
of block spins, however, can also be re­
garded as a spin system in its own right, 
with properties that can be investigated 
by the same methods that are applied to 
the original model. It  can be assumed 
that there are co uplings between the 
block spins, which depend on the tem­
perature and which determine in t urn 
the probability of each possible spin 
configuration. An initial guess might be 
that the couplings between block spins 
are the same ones specified in the origi­
nal lattice of Ising spins, namely a near­
est-neighbor interaction with a strength 

PROBABILITY DISTRIBUTION for a system of block spins is found by adding up the prob­
abilities for all the configurations of the original lattice that contribute to each configuration 
of the block spins. The calculation is shown for a system of six spins on a triangular lattice. 
Two blocks of three spins each are formed from the lattice, and each block is replaced by a sin­
gle spin whose orientation is determined by majority rule. The six spins have 64 possible config­
urations, which are assigned to columns in such a way that all the configurations in each col­
umn give rise to the same block-spin configuration. For example, all the configurations in the 
column at the far left have at least two spins in each block pointing up, so that they are rep­
resented by two up block spins. The coupling strength in the original lattice is set equal to .5, 
which yields the nearest-neighbor probabilities shown at the top of the page. From this set of 
numbers a probability is calculated for every configuration of the original lattice; then all the 
probabilities in each colum n are added up to give the probability of the corresponding block­
spin configuration. The block-spin probabilities are not the sam e as those specified for the orig­
inal lattice, which im plies that the coupling strength is also d�fferent, as is the temperature. 

given by the parameter K. the recipro­
cal of the temperature. 

This guess can easily be checked, be­
cause the probability distribution for 
the configurations of at least a small 
part of the block-spin system is already 
known; it was computed from the con­
figurations of the original lattice in the 
course of defining the block spins. S ur­
prisingly, this hypothesis i s  generally 
wrong: the block spins do not have the 
same couplings as the spins in the orig­
inal model. Assuming that only adja­
cent sites interact and that they have a 
coupling strength equal to K gives the 
wrong set of probabilities for the config­
urations of the block spins. 

I f the specifications of the original 
model will not describe the system of 

block spins, then some new set of cou­
plings m ust be invented. The g uiding 
principle in formulating these new inter­
actions is to reproduce as accurately as 
possible the observed probability d istri­
b ution. In general the nearest-neighbor 
coupling strength must be changed, that 
is, K m ust take on a new value. What is 
more, couplings of longer range, which 
were excluded by definition from the 
Ising model, m ust be introduced. For ex­
ample, it may be necessary to establish a 
coupling between spins at the opposite 
corners of a square. There might also be 
direct interactions among spins taken 
three at a time or four at a time. Cou­
plings of still longer range are possible. 
Hence the block spins can be regarded 
as a lattice system, but it is a system 
quite d ifferent from the original one. 
Notably, because the basic couplings 
have d ifferent values, the lattice of block 
spins is at a temperature d ifferent from 
that of the initial Ising system. 

Once a set of couplings has been 
found that correctly describes the prob­
ability d istr ibution for the block spins, a 
lattice of arbitrary size can be construct­
ed from them. The new lattice is formed 
the same way the original one was, but 
now the probability for the spin at each 
site is determined by the newly derived 
coupling strengths rather than by the 
single coupling of the Ising model. The 
renormalization-group calculation now 
proceeds by starting all over again, with 
the new system of block spins as the 
starting lattice. Once again blocks of 
nine spins each are formed, and in some 
small region, s uch as an array of 36 
spins, the probability of every possible 
configuration is found. This calc ulation 
is then employed to define the probabil­
ity distribution of a second generation 
of block spins, which are once more 
formed by majority rule. Examination 
of the second-generation block spins 
shows that the couplings have again 
changed,  so that new values must be 
s upplied a second time for each cou­
pling strength. Once the new val ues have 
been determined another lattice system 
(the third generation) can be construct-
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ed and the entire procedure can be re­
peated yet again. 

The point of this repetitive operation 
is that it  provides information about the 
behavior of distinct but related spin sys­
tems in which the fundamental scale of 
length gets larger with each iteration. 
After the first block-spin transformation 

the fluctuations at the smallest scale 
have been eliminated, but those slightly 
larger, with a scale of roughly three 
times the original lattice spacing, can 
be seen more clearly. After the second 
transformation each block spin repre­
sents the 8 1  spins in a nine-by-nine block 
of the original lattice, and all fluctua-

T = 1 .22Tc O R I G I NAL LATTICE 

FIRST-STAGE BLOCK S P I N S  

SECOND-STAGE BLOCK S P I N S  

THI RD-STAGE 
BLOCK S P I N S  

FOU RTH­
STAGE 
BLOCK 
S P I N S  

l.-<- JII -. �-=�� ;�.+, 

tions up to this size range are averaged 
out, leaving only those larger than nine 
lattice units. The next iteration removes 
all  fluctuations whose scale is between 
nine and 27 lattice units, then the fol­
lowing iteration removes those between 
27 and 8 1  units. Eventually fluctuations 
at all scales up to the correlation length 

F I RST-STAGE 

--

S ECOND -S TA G E  BLOCK S P I N S  

BLOCK-SPIN TRANSFORMATION is applied t o  a lattice o f  spins 
repeatedly, each time elucidating the behavior of the system at a larg­
er scale. The computer simulation, which was carried out by the au­
thor, began with an array of some 236,000 spins; a black square rep­
resents an up spin and an open square a down spin. The initial tem­
p�rature was set equal to three values: above the Curie temperature, 
Te. at Te and just below Te. The transformation begins with the di-

vision of the original lattice into three-by-three blocks. Each block 
is replaced by a single spin whose value is determined by majority 
rule; these make up the lattice of first-stage block spins. The proce­
dure is then repeated, but with the first-stage block spins serving as 
the starting lattice. The resulting second-stage spins form the initial 
configuration for the next transformation, and so on. By the time the 
third stage is reached the number of spins is small enough for them all 
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LATIICE 

are averaged out. The resulting spin sys­
tem reflects only the long-range proper­
ties of the original Ising system, with all 
finer-scale fluctuations eliminated. 

The value of the block-spin technique 
can be perceived even through a simple 
visual inspection of the evolving model. 
Merely looking at a configuration of 
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Ising spins just below the Curie temper­
ature will seldom reveal that the model 
is slightly magnetized. At this tempera­
ture there is only a small excess of one 
spin direction over the other, and the 
many small-scale fluctuations obscure 
the overall bias_ After several applica­
tions of the block-spin transformation, 

however, the smaller fluctuations disap­
pear and the long-range magnetization 
becomes obvious. 

M uch of the physical meaning of the 
block-spin transformation is to be found 
in the way the couplings between spins 
change. The rules for deriving the new 
couplings from the old ones at each 

T = .99Tc ORIGINAL LATIICE 

FIRST-STAGE BLOCK SPINS 

SECOND-STAGE BLOCK SPINS 

THI RD -STAGE 
BLOCK SPINS 

FOU RTH­
STAGE 
BLOCK 
S P I N S  

t o  be shown, a n d  after t h e  fourth stage there are only 3 6  spins left, 
each one representing more than 6,000 sites in the original lattice. In 
the first stage any fluctuations whose scale of length is smaller than 
three lattice units are eliminated by the averaging procedure. The sec­
ond stage removes the fluctuations between three and nine lattice 
units, the third stage those between nine and 27 nnits, and so on. When 
the initial temperature is above Te, the spins become more nearly ran-

dom in appearance with each iteration and large-scale fluctuations 
disappear; when the temperature is below Te, the spins become more 
nearly uniform and what fluctuations remain are small in scale. When 
the starting temperature is exactly equal to Te. large-scale fluctua­
tions remain at all stages. Because the block-spin transformation 
leaves the large-scale structure of the lattice unchanged at the Curie 
temperature, a system at that temperature is said to be at a fixed point. 
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stage are often complicated, but the ef­
fect of the change can be i l lustrated by a 
quite simple example. Although the as­
sumptions are not realistic, I shall dis­
cuss a model in which no couplings with 
a range longer than the original, nearest­
neighbor interaction are introd uced. 
The only change in the coupling is an 
adj ustment in the value of K. which is 
equivalent to a shift in the temperature. 
Moreover, this adj ustment in K will 
have a simple form: at each stage in the 
procedure the coupling strength in the 
new lattice will  be set equal to the 
sq uare of the coupling in the old lattice. 
If  the new coupling is denoted K', it is 
given by the equation K' = K2 .  

Suppose in some initial state K is 
eq ual to 1 / 2 (which mealls that the tem­
perature has been given an initial value 
of 2 in the arbitrary units employed 
here).  In the thinned-out lattice formed 
as a product of the block-spin transfor­
mation K will be replaced by K', with a 
value of ( 1 /2 ) 2, or 1 / 4. Repeating the 
transformation yields successive values 
of 1 / 1 6, 1 / 2 5 6  and so on, in a series that 

K15 = (K' 4)' 

K14  = (K,, ) '  

K ' 3  = (K,,)' 

K" = (K, , )' 

K" = (Kl O)'  

K,o  = (Kg)' 

(f) Kg = (K.)' z 
0 
� K. = (K,)' a: w 
t::: K, = (K.)' z 
a: (f) K. = (Ks)' � u 
0 Ks = (K4)' -' CD 

K4 = (K3)' 

K3 = (K,)' 

K, = (K, )'  

K, = (Ko)' 

Ko 

rapidly approaches zero. With each iter­
ation the spin system is converted into a 
new system that not only has a thinner 
lattice but also has weaker couplings 
between the spins. S ince K is equal to 
1 /  T, the temperature increases with each 
iteration and the lattice approaches the 
limit of infinite temperature and ran­
dom spins. 

I f  the initial coupling strength is set 
equal to 2 (so that the temperature has 
a value of 1 / 2) ,  the coupling increases at 
each stage in the calculation. After the 
first block-spin transformation the cou­
pling strength is 4, then 1 6, then 2 5 6; ul­
timately the strength becomes infinite. 
At the same time, of course, the temper­
ature falls and the system approaches 
the state of zero temperature, in which 
all the spins are aligned. 

I t  should be emphasized that what is 
being observed is not the evolution of 
any single spin system as the tempera­
ture changes. Nothing is being heated or 
cooled .  Instead a new spin system is be­
ing created at each stage, a system dis­
tinguished by a d ifferent set of cou-

. 5 1 

I I I I I 
1 0 8 7 6 5 4 3 

COUPLING STRENGTH (K = 1 /T) 

2 1 , 5  
TEMPERATU R E  (T = 1 1K) 

I I I I I 
,33 .25 ,2 . 1 7  .13 .1 

CHANGE IN THE COUPLING BETWEEN SPINS is part of the renormalization-group 
transformation. The adjustment that must be made to the coupling strength with each itera­
tion can take many forms, but a simple example is presented here: If the strength of the cou­
pling in the original lattice is given by the number K, then in the new lattice the coupling 
strength is equal to K2. Any initial value of K greater than 1 must approach infinity when K is 
squared repeatedly; any value less than 1 must approach zero. The special value K = 1 re­
mains unchanged no matter how many tim es the transformation is repeated. Because the tem­
perature can be defined (in appropriate units) as the reciprocal of the coupling strength, the 
renormalization-group transformation can be seen as establishing a correspondence between 
the original lattice and a new, thinned-out lattice that will generally have a different coupling 
strength and a different temperature. It is only at the fixed point, which corresponds to the Cu­
rie temperature, that the coupling and the temperature remain invariant with 'a value of 1 .  
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plings between spins. The large-scale or 
long-range behavior of the new lattice 
is equivalent to the behavior that would 
be observed in the original lattice at a 
d ifferent temperature. 

There is one initial value of K that 
does not diverge either to infinity or to 
zero, namely the value K = 1 .  S ince 1 2  is 
equal to I, K' remains equal to K no 
matter how many times the transforma­
tion is repeated.  When K is equal to 
1 ,  the system is said to be at a fixed 
point, where continued application of 
the renormalization-group transforma­
tion leaves all essential properties of the 
lattice unchanged. Actually the values 
K = 0 and K = infinity also represent 
fixed points, since zero squared is still 
zero and infinity squared is still infinity. 
Zero and infinity, however, are consid­
ered trivial fixed points, whereas the val­
ue K = 1 corresponds to the critical 
point. 

In  this discussion of the block-spin 
technique all the effects of the transfor­
mation have been expressed through a 
single parameter : the nearest-neighbor 
coupling strength K. Actually many oth­
er parameters are introduced by the 
transformation, each one corresponding 
to a longer-range coupling. All the pos­
sible combinations of these parame­
ters can be represented geometrically by 
constructing an imaginary multidimen­
sional space in which d istance measured 
along each d imension corresponds to 
variation in one of the parameters. Ev­
ery initial state of the spjn system and 
every block-spin transformation of it 
can be represented by a point on a sur­
face somewhere in this parameter space. 

In the geometric description of the re­
normalization-group method the sig­

nificance of the fixed points becomes ap­
parent. For the two-dimensional Ising 
system the surface in parameter space 
has the form of a hilly landscape with 
two sharp peaks and two deep sinkholes. 
The ridgeline that connects the peaks 
and the gully line that connects the sink­
holes meet in the center at a saddle point 
[see illustration on opposite page] . One 
sinkhole is the K = 0 fixed point; the 
other is the K = infinity fixed point. 
The critical fixed point lies at the point 
of precarious equilibrium in the saddle . 

The transformation of the system 
from one state to the next can be repre­
sented by the motion of a marble rolling 
on the surface. One can imagine a time­
lapse motion picture that would record 
the marble's position at one-second in­
tervals; then each frame would reveal 
the effect of one iteration of the block­
spin transformation. I t  is the transfor­
mation that allows the marble to move, 
but the speed and direction of the mar­
ble are determined entirely by the slope 
of the surface at each point it crosses. 

Suppose the marble is initially placed 
near the top of a hill and j ust to one side 
of the ridgeline. At first it moves rapidly, 
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because the hill is steep near the top, and 
proceeds in the general direction of the 
saddle point. As the marble approaches 
the saddle the slope becomes more grad­
ual and the marble slows down, but it 
never comes to a complete stop. More­
over, because it started to one side of the 
ridgeline it does not quite reach the sad­
dle point; instead it is deflected to one 
side and begins to accelerate again, this 
time toward a sinkhole . 

The trajectory of the marble describes 
the path followed by the point repre­
senting a system of Ising spins as it is 
transformed repeatedly by the block­
spin method. The initial position j ust off 
the ridge l ine corresponds to an initial 
value of the various coupling parame­
ters that is equivalent to a temperature 
j ust above or j ust below the critical tem­
perature. In terms of the simplified ex­
ample described above, with j ust one pa­
rameter, the value of K is either sl ightly 
greater than 1 or less than 1. Setting the 
coupling strength equal to 1 is equiva­
lent to placing the marble exactly on 
the ridgeline. It  then moves directly to­
ward the saddle point, or critical fixed 
point. Again the motion is rapid at first 
but becomes slower as the saddle is 
approached.  In this case, however, the 
marble remains balanced between the 
two descending slopes. Even after a 
large number of iterations it remains at 
the fixed point. 

A trajectory on the saddle-shaped sur­
face in parameter space can be made to 
approach the fixed point as closely as 
is wished by setting the initial value of 
K sufficiently close to the critical value. 
In the example considered here, where 
the critical value of K is 1, the initial val­
ue of K might be .9999,  which can be 
squared several times before it changes 
appreciably. As a result the trajectory 
comes quite close to the critical fixed 
point before it veers off toward the high­
temperature sinkhole. 

By the examination of many such tra­
jectories the topography of the surface 
itself can be mapped in the small region 
surrounding the saddle point. The slope 
of the surface is what determines how 
the system approaches the fixed point 
and how it departs from it. Knowing the 
slope, then, one can calculate how the 
properties of the system vary as the ini­
tial coupling and the initial temperature 
are changed. That is precisely the infor­
mation sought for an understanding of 
critical phenomena. . 

The macroscopic properties of a ther­
modynamic system near the critical 

point are determined by the temper­
ature. To be more precise, properties 
such as the spontaneous magnetization, 
the susceptibility and the correlation 
length are functions of the amount by 
which the temperature of the system de­
parts from the critical temperature, Te• 
For this reason it is convenient to define 
the temperature in such a way that all 

EVOLUTION OF A SPIN SYSTEM in response to repeated renormalization-group transfor­
mations can be described as tbe motion of a point on a surface constructed in an imaginary, 
multidimensional space: tbe parameter space. Tbe form of tbe surface is defined by all tbe con­
plings between block spins, but only tbe nearest-neigbbor coupling, K, is considered bere. Tbe 
surface bas two peaks and two sinkboles, wbicb are connected to a saddle point. Tbe trajectory 
followed by tbe point tbat represents tbe state of tbe system is determined entirely by tbe slope 
of tbe surface. An initial value of K sligbtly greater tban 1 corresponds to an initial position 
sligbtly to one side of tbe ridgeline tbat connects tbe peaks. After several block-spin transfor­
mations tbe point rolls down tbe bill, passes near tbe saddle point and veers off into one of tbe 
sinkboles, wbere K tends toward infinity. An initial value of K sligbtly less tban 1 leads to a simi­
lar trajectory on tbe otber side of tbe ridgeline and terminates in tbe otber sinkbole, wbere K 
approacbes zero. Wben K is equal to exactly 1, tbe point remains permanently on tbe ridgeline, 
approacbing equilibrium at tbe saddle point. Botb of tbe sinkboles are fixed points (since tbe 
values of K = 0 and K = infinity do not cbange witb furtber renormalization-group transforma­
tions), but tbey are considered trivial fixed points. Tbe saddle defines tbe critical fixed point. 

critical points are equivalent. A suitable 
quantity is the reduced temperature, t, 
defined as the difference between the ac­
tual temperature and the critical tem­
perature, divided by the critical temper­
ature; thus t is equal to T - Tel Te. On an 
ordinary temperature scale such as the 
Kelvin scale the critical temperatures of 
different systems fall at different values, 
but all critical points hav'e the same re­
duced temperature, namely zero. 

All critical properties are proportion­
al to the absolute value of the reduced 
temperature raised to some power. The 
problem of describing critical phenome­
na is to determine what that power is, or 
in other words to determine the values 
of the critical exponents. For example, 
the magnetization, M, of a spin system is 
given by the proportionality M I t ill, 
where {3 (the Greek letter beta) is a crit­
ical exponent and where the vertical 
lines designate the absolute value of t. 
The magnetic susceptibility is propor­
tional to 1 II f lY, where 'Y (the Greek let­
ter gamma) is another exponent. The 
correlation length is associated with a 

third exponent, v (the Greek letter nu), 
in a relation of the same form: the length 
is proportional to 1 /1 t l v .  

The earliest attempts to formulate 
a mathematical description of critical 
phenomena were theories of a kind that 
are now called mean-field theories. The 
first of these was introduced in 1 873  
by J .  D.  van der  Waals as  an  explana­
tion of phase changes in fluids. A theo­
ry of magnetic phase transitions was pro­
posed in 1 907 by Pierre Weiss. In 1 9 3 7  
L .  D .  Landau o f  the Academy o f  Sci­
ences of the U.S .S .R.  proposed a more 
general formulation of mean-field theo­
ry, thereby providing a framework in 
which many physical systems could be 
discussed. In all these theories' the state 
of any selected particle is determined by 
the average properties of the material as 
a whole, properties such as the net mag­
netization. In effect all particles in the 
system contribute equally to the force at 
every site, which is equivalent to assum­
ing that the forces have infinite range. 

Mean-field theories are qualitatively 
successful. They account for important 
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Ko = 1.1 

Ko = 1.01 

Ko = 1.001 

Ko = 1.0001 

Ko = 1 

SLOPE OF THE PARAMETER SURFACE in tbe vicinity of the 
critical fixed point determines tbe macroscopic properties of the Ising 
model. If trajectories are plotted for many initial values of K near the 
critical value (wbicb in tbis case is K = 1 ), it is the slope at the saddle 
point tbat determ ines bow quickly tbe trajectories veer off toward the 
trivial fixed points at K = 0 and K = infinity. If tbe surface is com para-

tively flat (/e!t), a trajectory witb an initial value of K sucb as K = 1.01 
passes close to tbe saddle point. Wben tbe surface is  more steeply 
curved (right), tbe corresponding trajectory bends more abruptly 
toward tbe sinkbole. Because tbe temperature is tbe reciprocal of K 
tbe slope near tbe fixed point reveals bow tbe properties of tbe sys­
tem change as the temperature departs from the critical temperature. 

features of the phase d iagrams of fluids 
and ferromagnets, the most notable of 
these features being the existence of a 
critical point. The quantitative predic­
tions, however, are less satisfactory:  the 
theories give the wrong values for the 
critical exponents. For {3, the exponent 
that governs the spontaneous magneti­
zation, mean-field theory implies a val­
ue of 1 12;  in other words, the magneti­
zation varies as the square root of the 
reduced temperature. The exponent as­
sociated with the susceptibility, 'Y, is as­
signed a value of 1, so that the suscep­
tibility is proportional to 1 /1 1 1. The ex­
ponent for the correlation length, v, is 
1 12 ,  so that this quantity is proportional 
to 1 /  vTtl, 

The exponents calculated from mean­
field theory suggest a plausible form for 
each of these functions. The magnetiza­
tion has two possible values ( +  Vi and 
- Vi) at all temperatures below the crit­
ical point, and then it vanishes above the 
critical temperature. Both the suscep­
tibility and the correlation length ap­
proach infinity as 1 nears zero from ei­
ther above or below. The actual values 
of the mean-field exponents, however, 
are known to be wrong. 

For the two-dimensional Ising model 
the critical exponents are known exactly 
from Onsager's solution. The correct 
values are {3 = 1 / 8, 'Y = 7 / 4  and v = I ,  
which d iffer significantly from the pre­
dictions of mean-field theory and imply 
that the system has rather different be­
havior. For example, the magnetization 
is proportional not to the square root of 
the reduced temperature 1 but to the 
eighth root of f. Similarly, the suscepti-
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bility is given by the reciprocal not of 1 
but of 1 raised to the 1 .  75th power, 
which makes the divergence near the 
critical point steeper and more abrupt. 

The reason for the quantitative failure 
of mean-field theories is not hard to 
identify. The infinite range assigned to 
the forces is not even a good approxima­
tion to the truth. Not all spins make 
equal contributions; the nearest neigh­
bors are more important by far than any 
other spins. The same objection can be 
expressed another way: the theories fail 
to take any notice of fluctuations in spin 
orientation or in fluid density. 

I.n a renormalization-group calcula­
tion the critical exponents are deter­
mined from the slope of the parameter 
surface in the vicinity of the fixed point. 
A slope is simply a graphic represen­
tation of a rate of change; the slope 
near the fixed point determines the rate 
at which the properties of the system 
change as the temperature (or the cou­
pling strength) is varied over some nar­
row range near the critical temperature. 
Describing the change in the system as a 
function of temperature is also the role 
of the critical exponents, and so it is rea­
sonable that there is a connection be­
tween the exponents and the slope. 

Renormalization-group calculations 
for the two-dimensional Ising system 
have been carried out by several work­
ers. In 1 973  N iemeijer and van Lee uwen 
employed a block-spin method to study 
the properties of a system of Ising spins 
constructed on a triangular lattice . I 
have applied a somewhat different re­
normalization-group technique, called 
spin decimation, to a square lattice . In 

spin decimation, instead of assembling 
blocks of a few spins each, every other 
spin in the lattice is held fixed while a 
probability distribution is computed for 
the remaining spins. These calculations 
were much more elaborate than the 
model calculation described here; in my 
own work, for example, 2 1 7  couplings 
between spins were included. The crit­
ical exponents derived from the calc ula­
tion agree with Onsager's values to with­
in about .2 percent. 

Because an exact sol ution is known for 
the two-dimensional Ising model, 

the application of the renormalization 
group to it is something of an academic 
exercise. For a system of Ising spins in a 
three-dimensional lattice, however, no 
exact solution is known. A method has 
been devised, by Cyril Domb of Univer­
sity College London and many others, 
for finding approximate values of the 
exponents in the three-dimensional case. 
First the properties of the system at high 
temperature are determined with great 
precision, then these properties are ex­
trapolated to the critical temperature. 
The best results obtained so far by this 
method give values fer the exponents of 
{3 = . 3 3 ,  'Y = 1 .2 5  and v = .63 .  

Altho ugh extrapolation from a high­
temperature solution leads to good ap­
proximations for the critical exponents, 
it provides l ittle intuitive understand­
ing of how the system behaves near the 
critical point. A renormalization-group 
calculation gives essentially the same 
values for the exponents, but it also 
explains important universal features of 
critical behavior. 
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Two remarkable facts about the ex­
ponents in the three-dimensional Ising 
model should not be overlooked. The 
first is simply that the values are differ­
ent from those for the two-dimensional 
model. In mean-field theories the dimen­
sional ity of space does not enter the cal­
c ulations and so the critical exponents 
have the same values in any space. The 
second surprise is that the exponents are 
not integers or ratios of small integers, 
as they are in mean-field theories. They 
may even be irrational numbers. 

If it is surprising that the spatial di­
mensionality infl uences the critical ex­
ponents, it is equally remarkable that 
certain other properties of the model 
have no effect at all .  An example of such 
an irrelevant parameter is the structure 
of the lattice. In the two-dimensional 
Ising model it makes no difference 
whether the lattice is rectilinear, as in 
my own work, or triangular, as in the 
model employed by N iemeijer and van 
Leeuwen; the critical exponents are the 
same. By extension, in a real ferromag­
net the great variety of crystal structures 
all yield identical critical behavior . 

There is an intuitive j ustification for 
the irrelevance of the lattice structure 
and of other microscopic properties. A 
change in the form of the lattice has a 
large effect on events at the scale of the 
lattice spacing, but the effect diminishes 
as the scale of interest increases. In a 
renormalization-group calculation the 
fl uctuations at the scale of the lattice 
spacing are averaged out after the first 
few iterations, and so models with many 
different lattices have the same critical 
behavior. Through the renormalization 
group the appearance of the same crit­
ical exponents in many systems is seen 
to result from the topography of the sur­
face in parameter space. Each lattice 
structure corresponds to a different po­
sition in parameter space, but at the crit­
ical temperature every lattice is rep­
resented by a point somewhere along 
the ridgeline. After repeated renormal­
ization-group transformations all these 
systems converge on the same fixed 
point, namely the saddle point. 

The idea that certain variables are ir­
relevant to critical phenomena can be 
extended to systems other than ferro­
magnets. A fluid near its critical point, 
for example, has the same properties as 
the three-dimensional Ising model of a 
ferromagnet. In order for this identity to 
be understood some correspondence 
m ust be establ ished between the macro­
scopic properties of the fl uid and those 
of the magnet. The magnetization, 
which is the number of up spins minus 
the number of down spins, can be identi­
fied with the density difference in the 
fluid :  the density of the liquid phase mi­
nus the density of the vapor phase . J ust 
as the magnetization vanishes at the Cu­
rie temperature, so the density d iffer­
ence falls to zero at the critical point of 
the fluid.  These q uantities-the magnet i-

zation and the density difference-are 
called the order parameters of their re­
spective systems. The susceptibility of 
the magnet, which is the change in mag­
netization for a given small change in 
the applied magnetic field, is analogous 
to the compressibility of the fluid :  the 
change in density that results from a giv­
en small change in pressure. Like the 
s usceptibility, the compressibility be­
comes infinite at the critical point. The 
critical behavior of the fluid and that of 

the three-dimensional Ising model are 
identical in that they have the same sur­
face in parameter space. The two sys­
tems have different initial positions on 
the surface, but they converge on the 
same saddle point and hence have the 
same critical exponents. 

The similarity observed in the criti­
cal behavior of fluids and of ferro­

magnets is an instance of a more general 
hypothesis called critical-point univer-

PREDICTIONS OF 

MEAN-FIELD THEORIES EXACT SOLUTION 
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{3 = VB 

o + 
REDUCED TEMPERATURE (t) 

o + 
REDUCED TEMPERATURE (t) 
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o + - 0 + 
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CRITICAL EXPONENTS express the dependence of macroscopic properties on the extent 
to which the temperature of the system departs from the critical temperature. The temperature 
is most conveniently given in the form of the reduced temperature, I, defined by the equation 
I = T - Tel Te. All macroscopic properties are then proportional to the absolute value of t raised 
to some power; the power is the critical exponent for that property. The exponents and power 
laws in the graphs at the left are those predicted by m ean-field theories, which ignore all fluctu­
ations. The exponents in the graphs at the right are derived from an exact solution of the two­
dim ensional Ising m odel reported in 1944 by Lars Onsager of Yale University. The exponents 
show how the properties of the system change as the temperature or the coupling strength is 
changed; that is the sam e information conveyed by the slope of the surface in parameter space 
near the critical fixed point. The exponents can be determined from the slope, and calculations 
by the author and others for the two-dim ensional Ising model give values close to Onsager!s. 
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sality. According to the hypothesis, only 
two quantities determine the critical be­
havior of most systems: the dimension­
ality of space and the dimensionality of 
the order parameter. These quantities 
are labeled respectively d and n.  All sys­
tems that have the same values of d and 
n are thought to have the same surface 
in parameter space and the same critical 
exponents. They are said to be mem­
bers of the same universality class. 

The dimensionality of space is seldom 
difficult to determine, but the dimen­
sionality of the order parameter re­
quires more careful consideration. In 
magnetic systems, where the order pa­
rameter is the magnetization, n is the 
number of components needed to define 
the spin vector. The vector of an Ising 
spin can be oriented only along a single 
axis, and so it has only one component; 
for the Ising model n is equal to 1. A 
spin vector that is allowed to point any­
where in a plane has two components, 
which are customarily drawn along the 
two axes that define a plane. Similarly, 

UNIVERSALITY CLASS THEORETICAL MODEL 

d = 2  n = 1 Ising model in 
two dimensions 

n = 2 XY model in two 
dimensions 

n = 3  Heisenberg model 
in two dimensions 

d > 2  n = oo  "Spherical" model 

d = 3 n = O  Self·avoiding 
random walk 

n = 1 Ising model in 
three d imensions 

n = 2 XY model in 
three dimensions 

� = 3 Heisenberg model 
in three dimensions 

d ,,;; 4 n = -2 
n = 32 Quantum chromo· 

dynamics 

a vector that can point anywhere in 
three-dimensional space has three com­
ponents, so that n equals 3 .  

For the three-dimensional Ising mod­
el d equals 3 and n equals 1. Ordinary 
fluids belong to the same universality 
class. The space in which the fluid exists 
clearly has three dimensions. The order 
parameter-the difference in density be­
tween the liquid and the vapor phases­
is a quantity that has only a magnitude 
and hence only one component; it can 
be expressed as a single number, j ust as 
the value of an Ising spin can be. 

Several other physical systems are 
members of this class. A mixture of two 
liquids such as oil and water exhibits 
critical behavior near the temperature 
where the component fluids become 
completely miscible in each other, a 
temperature called the consolute point. 
At temperatures below the consolute 
point the mixture separates into two 
phases, and the order parameter is de­
fined as the concentration difference be­
tween the two phases, another quantity 

PHYSICAL SYSTEM ORDER PARAMETER 

Adsorbed films Surface density 

Helium-4 films 
Amplitude of 
superfluid phase 

Magnetization 

None 

Conformation of long- Density of 
chain polymers chain ends 

Uniaxial ferromagnet Magnetization 

Fluid near a critical Density difference 
point between phases 

Mixture of l iquids Concentration 
near consolute point difference 

Alloy near order- Concentration 
disorder transition difference 

Planar ferromagnet Magnetization 

Helium 4 near super· Amplitude of 
fluid transition superfluid phase 

Isotropic ferromagnet Magnetization 

None 

Quarks bound in 
protons, neutrons, etc. 

UNIVERSALITY HYPOTHESIS states that diverse physical systems behave identically near 
their critical points. In most cases the only factors that determine the critical properties are the 
dimensionality of space, d, and the dim ensionality of the order parameter, 11. For magnetic sys­
tems the order parameter is the magnetization, and its dim ensionality is the number of compo­
nents needed to describe the spin vector. Most systems with the same values of d and 11 are 
m embers of the sam e universality class and share the same critical expon ents. For example, 
ferromagnets that resemble the three-dim ensional Ising model, fluids, mixtures of liquids and 
certain alloys are all m embers of the class with d = 3 and 11 = 1; graphs of their properties near 
a critical point should all have the sam e form. The interpretation of some values of d and 11 is 
less obvious, and values such as 11 = - 2 can be defined mathematically but corresponft to no 
known physical system. The XY model and the Heisenberg model are similar to the Ising mod­
el but describe ferromagnets whose spin vectors have two and three components respectively. 
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that can be expressed as a single num­
ber. Alloys such as brass have a transi­
tion between an ordered phase, where 
the two metals occupy alternate sites in 
a regular lattice, and a disordered phase, 
where their distribution is less uniform. 
The order parameter in this system is 
again a concentration difference, so that 
n equals 1. All these systems are expect­
ed to have the same critical exponents 
as the three-dimensional Ising model. 
So are some real ferromagnets, those 
that are easily magnetized only along a 
single axis. The available experimental 
evidence confirms these predictions. 

The universality hypothesis would be 
trivial if the critical exponents had the 
values of integers or simple fractions 
such as 1 12.  Many physical laws share 
such exponents, and there is no compel­
ling reason for postulating a connection 
between them. Gravitation and electro­
magnetism both have an inverse-square 
law (an exponent of - 2), but that coin­
cidence does not demonstrate that the 
two forces are identical. The correspon­
dence of exponents does seem remark­
able, however, when the values are not 
round numbers but fractions such as .63 . 
The convergence of many systems on 
these values cannot be coincidental. It is 
evidence that all the details of physical 

, structure distinguishing a fluid from a 
magnet are less important than the geo­
metric plOperties expressed by the val­
ues of d and n.  

The two-dimensional Ising model 
(d = 2, n = 1 )  typifies a class of systems 
that are confined to two-dimensional 
space. One example is a thin film of liq­
uid; another is a gas adsorbed on a solid 
surface. An ordinary ferromagnet falls 
into the class with d = 3 and n = 3, that 
is, the lattice is three-dimensional and 
each spin has three components, so that 
it can point in any direction. When the 
spins are constrained to lie in a plane, 
the class is reduced to d = 3 and n = 2 . 
In this same class are the superfluid 
transition of liquid helium 4 and the 
superconducting transitions of various 
metals. 

Other universality classes have val­
ues of d and n whose interpretation 

is somewhat less obvious. The case of 
d = 4 is of interest in the physics of ele­
mentary particles, where one of the four 
spatial dimensions corresponds to the 
axis of time. In a theoretical lattice of 
spins callee! the spherical model, where 
an individual spin can have any magni­
tude and only the total of all the spins is 
constrained, n is effectively infinite . A 
self·avoid ing random walk through a 
lattice of points, or in other words a ran­
dom walk that never occupies the same 
lattice site more than once, describes the 
folding up in space of a long-chain poly­
mer; Pierre G illes de Gennes of the Col­
lege de France has shown that this prob­
lem belongs to a universality class with n 
equal to zero, In theoretical models n 
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obvious and the obscure, the how-to 
and the how-cortJe, the superstition 
and the sQence of bOtany, horticul­
ture, floriculture, agriculture and the 
environment. A gift of year-round 
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and inquisitive gardener. 

A Garden sampler: 
'the Spiderwort Assay: A Japanese 
plant geneticist has develoPed clones of a wildflower that can detect ioniz­ing radiation with more sensitivity 
than a Geiger counter. 

The Bamboozling Thamnocalamus: ' 
In synchronization throulrltout the world, a popular garden bamboo is 
blooming for the first time in a century 
-signaling the death of this entire 

generation of the species. 
The Non-Lawn Grass: There is a beautiful natural alternative to turf 
that requires no mowing, spraying 
or fertilizing. 
Power Lines in the Wake of 2,4,5-T: 
There is a non-liZhemical alternative to 
the country's most toxic herbicide-'­
currently used by utility companies to 
maintain fully 32,000 square miles 
of transmission line rights-of-way. 

. The Directors of the Chicago Horti­
cultural Society, The .Horticultural 
Society of New York, Los Angeles 
Arboretum and The New York Botanical Garden invite you to 
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six bi-monthly, full-color issues. 
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If you have ever taken a lux­
ury sports car through a tight 
turn, you know the feeling. 
It's the sense of supreme pre­
cision with which this trim, 
compact camera proclaims 
its N ikon heritage. A feeling 
that is borne out by the pro­
fessional quality pictures 
the Nikon FE delivers with 
automatic ease. And one 
that, unlike other fine things 
in life, is readily affordable. 

With the Nikon Ft;, you can 
simply focus and shoot . . .  
and rely on its Nikon elec­
tronics to give you sharp, 
magnificently exposed 
photographs, automatically. 
Or, switch to manual opera­
tion and enjoy complete 
creative control over every 
exposure, more easily than 
you ever thought possible. 

Above all, this is a camera 
that makes no compromise 
in its supreme Nikon quality. 
Stroke the advance lever, 
and feel the smoothness of 
precision gearing machined 
to microscopic tolerances. 
Press the exposure button, 
and hear the shutter respond 
with hushed precision. Look 
through the bright, silver­
coated viewfinder, and see 
your picture snap into sharp 
focus with a fingertip touch. 

Know, too, that the world's 
greatest photographic sys­
tem stands behind your 
Nikon FE. Add the dynamic 
firepower of motor drive, at 
up to 3. 5 shots a second. 
Banish darkness with the in­
genious automatic thyristor 
flash. Explore new perspec­
tives through more than 60 
Nikkor lenses, the same 
superb optics chosen by 
most professionals for their 
sharpness and color fidelity. 

For the purist: 
The Nikon FM 
For those who prefer only 
manual exposure control, the 
Nikon FM offers the reliable 
guidance of one-step elec­
tronic metering. It's as com­
pact and precisely responsive 
as the FE and costs even less. 
At your N ikon dealer. 

Nikon Inc . •  Garden City. New York 11530. 
In Canada : Nikon Canada. Inc. 
© Nikon Inc. 1979 

fxperience 
a sense of perfection. 
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can even take on the value - 2, although 
the physical meaning of a negative num­
ber of vector components is not clear. 

The only values of d and /l that have 
a straightforward physical meaning are 
integer values. This is partic ularly clear 
in the case of d, since a space with a non­
integer number of dimensions is hard 
even to imagint!. In renormalization­
group calculat ions, however, d and /I 
appear in equations where they can be 
allowed to vary continuo usly over some 
range. It is even possible to draw a graph 
in which the values of critical exponents 
are plotted as contin uous functions of d 
and /l . The exponents have well-defined 
val ues not only for integer dimens ions 
but also for all fractional d imensions be­
tween the integers. Such a graph shows 
that the exponents approach the values . 
given by mean-field theory as the num­
ber of spatial d imensions approaches 4. 
When d is eq ual to exactly 4, and at all 
higher val ues of d, the mean-field values 
are exact. This observation has given 
rise to an important method of perform­
ing renormalization-group calculations. 
The dimensionality of space is ex­
pressed as being equal to 4 - E ,  where E 
( the Greek letter epsilon) is a number 
that is assumed to be small. The critical 
exponents can then be calculated as the 
sum of an infinite series of terms incl ud­
ing progressively higher powers of E .  If E 
is less than I ,  a high power of E will have 
a small value, and reasonable accuracy 
can be obtained by neglect ing all but the 
first few terms in the infinite series. 

This calculation method, which is 
called the epsilon expansion, was devel­
oped by M ichael E. Fisher of Cornell 
University and me. It is a general meth­
od for solving all the problems to which 
mean-field theory can be applied, and it 
represents the nat ural successor to Lan­
dau's theory. Indced, it supplies answers 
in the form of corrections to the values 

.given by mean-field theory. The block­
spin method is the more transparent 
technique, but the epsilon e xpansion is 
the more powerful one. 

It is not entirely surpris ing that the 
critical exponents should converge on 
the mean-field val ues as the number of 
spatial d imensions increases.  The fun­
damental assumption of mean-field the ­
ories is that the force at each lattice site 
is influenced by conditions at many oth­
er sites. The number of nearest-ne ighbor 
sites increases along with the number of 
spatial d imensions. In a one-dimension­
al lattice each site has j ust two nearest 
neighbors, in a two-dimensional lattice 
four, in a three-dimensional lattice six 
and in a four-dimensional lattice e ight. 
Hence as the d imensionality increases, 
the physical situation begins to resemble 
more closely the underlying hypothesis 
of mean-field theory. It remains. a mys­
tery, however, why d = 4 should mark a 
sharp boundary above which the mean­
field exponents are exact. 

In this article I have disc ussed main-
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V ARIA TlON OF CRITICAL EXPONENTS with the dimensionality of space (d) and of the 
order parameter (II) suggests that physical systems in different universality classes should have 
different critical properties. The exponents can be calculated as continuous functions of d 
and 11, but only systems with an integral number of dim ensions are physically possible. In a 
space with four or more dim ensions all the critical exponents take on the values predicted by 
mean-field theories. The graphs were prepared by Michael E. Fisher of Cornell University. 
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Iy the applications of the renormaliza­
tion gro up to critical phenomena. The 
technique is not confined to those prob­
lems, however, and indeed it did not be­
gin with them. 

The proced ure called renormalization 
was invented in the 1 940's as part of 
the development of quantum electrody­
namics, the modern theory of interac-
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tions between electrically charged par­
ticles and the electromagnetic field. The 
difficulty encountered in the formula­
tion of the theory can be understood as 
one of mUltiple scales of length. For 
some time it had been apparent that 
the charge of the electron predicted by 
quantum-mechanical theories was infi­
nite, a prediction that was in serious 
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its critical point, where each lattice site either is occupied by an atom or is vacant, so that the 
fluctuations becom e variations in density. An alloy such as brass has a similar structure, where 
each site is occupied by one kind of metal or the other. In all these systems the fluctuations are 
thermal; in the quantnm field theories that describe the interactions of elementary particles 
there are quantum fluctnations of the vacuum, which allow particles and antiparticles to ap­
pear spontaneously. A simple quantnm field theory can be formulated on a lattice by specify­
ing that the particles and antiparticles can be created and annihilated only at the lattice sites. 
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conflict with the measured charge. The 
renormalized the'ory of electrodynam­
ics does not abolish the infinity; on the 
contrary, the electron is defined as a 
point particle whose "bare" charge is in­
finite. In q uantum electrodynamics the 
bare charge has the effect, however, of 
inducing a charge of opposite polarity 
in the surrounding vacu um, which can­
cels most of the infin'ity, leaving only 
the small net charge that is observed in 
ordinary experiments. 

One can imagine a probe particle that 
could measure the electron's charge at 
arbitrarily close range. At long range 
it would find the familiar finite value, 
which is the difference between the bare 
charge and the induced charge. As 
the layers of shielding were penetrated 
the measured charge would increase, 
and as the range was reduced to zero 
the charge would become infinite . The 
renormalization procedure provides a 
means for subtracting the infinite shield­
ing charge from the infinite bare charge 
so that a finite difference results. 

In the 1 950's it was pointed out by 
several workers, among them M urray 
Gell- Mann and Francis E. Low, that the 
renormalization procedure adopted for 
quantum electrodynamics is not unique. 
They proposed a more general formula­
tion, which is the original version of the 
renormalization group. In their applica­
tion of the method to quantum electro­
dynamics a mathematical expression is 
constructed that gives the magnitude of 
the charge at some definite d istance 
from the electron. Then the form of the 
expression is examined as the distance at 
which the measurement is made is al­
lowed to approach its limiting value of 
zero. The arbitrariness of the procedure 
is in the choice of the initial distance. 
Any value can be selected without 
changing the ultimate results, so that 
there is an infinite set of eq uivalent re­
normalization procedures. 

A "group" in mathematics is a set of. 
transformations that meets a special re­
quirement: the product of any two trans­
formations must also be a member of 
the set. For example, rotations are trans­
formations that make up a group, since 
the product of any two rotations is also a 
rotation. What this means in the case of 
the renormalization group is that the 
procedure can be iterated indefinitely, 
since applying the procedure twice is 
equivalent to applying the product of 
two transformations. Actually the re­
normalization group is properly called a 
semigroup because the inverse of the 
transformation is not defined. The rea­
son for this can be seen plainly in the 
block-spin technique applied to the two­
dimensional Ising model. A block of 
nine spins can be condensed into a single 
average spin, but the original spin con­
figuration cannot be recovered from the 
average because essential information 
has been lost. 

The version of the renormalization 
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group outlined in this article differs in 
several respects from the one intro­
duced by Gell -Mann and Low. The ear­
lier version of the technique is useful 
only for understanding problems that 
can be solved by one of the traditional 
methods of physics: by finding some ap­
proximate expression for the behavior 
of a system and then calculating better 
approximations as a series of pertur­
bations departing from the original ex­
pression. Moreover, in the original for­
mulation only one quantity is allowed 
to vary; in the example given above it is 
the charge of the electron. As a conse­
quence the surface in parameter space 
is not a multid imensional landscape but 
a mere line. The modern version of the 
renormalization group, which was in­
trod uced by me in 1 97 1 ,  gives access to 
a much broader spectrum of physical 
problems. What is equally important, it 
gives a physical meaning to the renor­
malization procedure, which otherwise 
seems purely formal. 

I n the past few years I have been at­
tempting to apply the newer version 

of the renormalization group to a prob­
lem in the physics of elementary parti­
cles. The problem is how to describe the 
interactions of quarks, the hypothetical 
elementary particles thought to com­
pose protons, neutrons and a multitude 
of related particles. In one sense the 
problem is much like the original re­
normalization problem of quantum 
electrodynamics; in another sense it is 
just the opposite. 

In quantum electrodynamics the 
charge of the electron is found to in­
crease as the electron is approached 
more closely. For interactions of quarks 
the property analogous to electric 
charge is called color, and for that rea­
son the theory of quark interactions has 
been named quantum chromodynamics. 
When the color charge of a quark is 
measured at close range, it seems to di­
minish as the distance becomes smaller. 
As a result two quarks that are very 
close together interact hardly at all: the 
coupling between them is weak. On the 
other hand, when the quarks are pulled 
apart, the effective color charge in­
creases and they become tightly bound. 
Whereas an electron ind uces a compen­
sating charge in the surrounding space, a 
quark seems to induce a color charge 
w.ith the same polarity, which augments 
its own charge at long range. Indeed, it is 
a widely accepted hypothesis that the 
effective coupling between quarks in­
creases without limit when the distance 
between them exceeds the diameter of a 
proton, which is about 1 0  - 13 centimeter. 
If that is true, a quark could be torn 
loose from a proton only by expending 
an infinite quantity of energy. The 
quarks would be permanently confined. 

One way of visualizing the binding of 
quarks is to construct imaginary lines 
of force between them. The strength of 

the coupling is then proportional to the 
number of lines per unit area that cross 
any surface between the particles. In the 
case of electrons when the particles are 
separated, the lines of force spread out 
in space, so that there are fewer lines per 
unit area. The density of lines declines 
as the square of the separation, which 
yields the famil iar inverse-square law 
for the electromagnetic force. With 
quarks, on the other hand, the prevailing 
hypothesis holds that the lines of force 
do not spread out in space; they remain 
confined to a thin tube, or string, that 
directly links the quarks. As a result the 
number of lines per unit area remains 
constant no matter what the distance is, 
and the quarks cannot be separated.  Al­
though this account of quark confine­
ment has an intuitive appeal, it is a qual­
itative explanation only. N o  one has yet 
been able to derive the confinement of 
quarks from the underlying theory of 
quantum chromodynamics. 

The confinement problem is one with 
many scales of length and energy and 
hence is a candidate for renormaliza­
tion-group methods. I have formulat­
ed a version of the problem in which 
the quarks occupy the sites of a lattice 
in four-dimensional space-time and in 
which they are connected by "strings" 
that follow the lines connecting sites. 
The lattice is a strictly artificial struc­
ture with no analogue in real space-time, 
and it must ultimately disappear from 
the theory. That can be accomplished 
by allowing the lattice spacing to ap­
proach zero. 

As in the study of ferromagnetic sys­
tems, a renormalization-group transfor­
mation is applied repeatedly to the lat­
tice of quarks and strings. In this way the 
interaction of the quarks can be exam­
ined at progressively larger separations. 
The question to be answered is whether 
the lines of force remain confined to 
tubelike bundles or spread out in the lat­
tice as the scale of length is increased. 
The calculations are near the limit of 
practicality for the present generation of 
digital computers. As yet I do not have 
the answers. 

There are many other problems seem­
ingly suitable for renormalization­

group methods but that have not yet 
been expressed in such a way that they 
can be solved. The percolation of a fluid 
through a solid matrix, such as water 
migrating through the soil or coffee 
through ground coffee beans, involves 
aggregations of fluid on many scales. 
Turbulence in fluids represents a prob­
lem of notorious difficulty that has re­
sisted more than a century of effort to 
describe it mathematically. It is charac­
terized by patterns with many character­
istic sizes. In the atmosphere, for exam­
ple, turbulent flows range in scale from 
small "dust devils" to hurricanes. 

One problem that has yielded to the 
renormalization group is a phenomenon 

in solid-state physics called the Kondo 
effect, after the J apanese physicist J un 
Kondo. The effect is observed in non­
magnetic metals, such as copper, when 
they are contaminated with a small con­
centration of magnetic atoms. The sim­
plest theories predict that the e lectrical 
resistance of such a metal will fall con­
tinuously as the temperature is reduced. 
Actually the resistance reaches a mini­
mum value at a finite temperature and 
then r ises again as the temperature is 
reduced further. The anomaly was nev­
er one of pressing importance because 
an explanation of it does not illuminate 
more general properties of solids, but it 
tantalized physicists for more than 40 
years, always seeming j ust beyond the 
reach of the available methods. The root 
of the diffic ulty is that the cond uction 
electrons in the metal can have any ener­
gy over a range of a few volts, but per­
turbations in that energy are significant 
down to a level of about 1 0 -4 volt. The 
problem was ultimately solved in 1 974, 
when I completed a renormalization­
group calculation of the electron ener­
gies at all temperatures down to abso­
lute zero. 

A more recent series of renormaliza­
tion-group calculations is notable in that 
it makes predictions that have been di­
rectly confirmed by experiment. The 
calculations concern the lattice-spin 
model in which d equals 2 and II equals 
2, or in other words concern a two­
d imensional lattice of two-component 
spins. It has been proved that no phase 
with long-range order is possible in this 
spin system, but renormalization-group 
studies done by J . M.  Kosterlitz of the 
University of Birmingham and David 
J. Thouless of Yale University have 
shown that the behavior of the system 
does change abruptly at a critical tem­
perature . These findings have been ap­
plied to studies of thin films of super­
fluid helium 4, which also fall into the 
universality class of d = 2 and II = 2. In 
particular Kosterlitz and David R. Nel­
son of Harvard University have predict­
ed a discontinuous j ump in the density 
of the superfluid fraction of the film . 
S uch a j ump has since been observed 
experimentally by J ohn D. Reppy of 
Cornell and others and has been found 
to have the predicted magnitude. 

For all the work that has been invest­
ed in the renormalization group it may 
seem the results obtained so far are rath­
er scanty . It should be kept in mind that 
the problems to which the method is be­
ing applied are among the hardest prob­
lems known in the physical sciences. If 
they were not, they would have been 
solved by easier methods long ago. In­
deed, a substantial number of the un­
solved problems in physics trace their 
d ifficulty to a multiplicity of scales. The 
most promising path to their solution, 
even if it is an ard uous path, is the 
further refinement of renormal ization­
group methods. 
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