LECTURE 6: Degenerate bosons

1° Understanding chemical potential of bosons

\[\eta(\varepsilon) = \frac{1}{\varepsilon^2 \exp(\varepsilon \mu) - 1} \] \implies \mu \leq \varepsilon_0 = 0 \text{ for } \varepsilon_0 = \frac{\hbar^2}{2m} \]

in order to keep \(\eta(\varepsilon) > 0 \)

\[N = \sum_{\varepsilon} \frac{1}{\varepsilon^2 \exp(\varepsilon \mu) - 1} \]

\[\iff N = \int_0^\infty \frac{D(\varepsilon) d\varepsilon}{\varepsilon \exp(\varepsilon \mu) - 1} \]

as \(T \) decreases, \(\mu \) must increase in absolute value as well to keep \(N \) constant \(\Rightarrow \) when \(\mu \) becomes zero, further decrease of \(T \) leads to loss of particles

The integral does not change if you change its value at discrete set of points of measure zero; also \(D(\varepsilon) \propto \varepsilon \) means \(D(\varepsilon) = 0 \) so any number of particles in \(\varepsilon = 0 \) is not included:

\[N = N_0 + N_* = e^{-\mu \varepsilon_0} + g \frac{V}{4\pi^2} \frac{(2m)^{3/2}}{\hbar^3} \int_0^\infty \frac{\varepsilon \exp(\varepsilon \mu) - 1}{\exp(\varepsilon \mu) - 1} \]

canonical ensemble applies

macroscopic number of particles in Bose-Einstein condensate

only to particles above the condensate

\[N_* = N \Rightarrow T = T_{\text{BEC}} \]

\[N_0 = \frac{N_0}{N} = 1 - \frac{N_*}{N} \]

\[N_0 = N \left[1 - \left(\frac{T}{T_{\text{BEC}}} \right)^2 \right] \]

\[\sum_{\varepsilon} \frac{\varepsilon^{m-1}}{\exp(\varepsilon) - 1} = \Gamma(m) \zeta(m) \Rightarrow T_{\text{BEC}} = \frac{3.51 \frac{\hbar^2}{m k_B} (N)^{2/3}}{8V} \]

\[\zeta(3/2) = 2.6124 \]
2° role of thermodynamic limit: \(N_0 = \frac{1}{e^{\mu/T} - 1} \approx \frac{k_B T}{\mu} \) for finite \(N \ll \mu \approx \frac{1}{N} \) as \(N \to \infty \frac{N}{V} = \text{const} \).

2° pressure of BEC

\[T < T_{\text{BEC}} \Rightarrow \beta P = \frac{\partial f}{\partial \mu} = \frac{3}{2} \left(\frac{T}{T_{\text{BEC}}} \right)^{3/2} \approx 1.341 \frac{g}{\lambda^3} \neq F(n) \]

3° Is BEC of noninteracting particles first or second order phase transition?

\[n_* = \frac{\partial^2 f}{\partial \mu^2} \left(\frac{T}{T_{\text{BEC}}} \right) \Rightarrow V^* = \frac{1}{n_*} = \frac{\lambda^3}{g \beta^{3/2}} \]

so transition can be induced by reducing volume \(V < V^* \) or increasing density, at fixed \(T \).

2° Clausius - Clapeyron relation for latent heat \(Q_l \):

\[m_0(T, p) = m^*(T, p) \Leftrightarrow d\mu_0 = d\mu^* \Rightarrow d\mu = -S dT + V d\mu \]

\(\left(\frac{\partial \mu}{\partial T} \right)_p = -S, \quad \left(\frac{\partial \mu}{\partial p} \right)_T = V \Rightarrow \frac{\partial p}{\partial T} \left|_{\text{exist}} \right. = \frac{S^* - S_0}{V^* - V_0} = \frac{Q_l}{\Gamma_{\text{BEC}}(V - V_0)} \)
\[\frac{dp}{dT} = \frac{5}{2} \frac{P}{T} \Rightarrow \Delta S = \frac{Q_L}{T_{BEC}} \frac{\Delta V}{V_x - V_0} \Rightarrow V_0 \equiv 0 \]

unrealistic due to no interparticle interactions

\[Q_L = T_{BEC} \frac{dp}{dT} = \frac{5}{2} \frac{P}{T_{BEC}} \]

\[= \frac{5}{2} \frac{g}{\alpha_3^{3/2}} \frac{\gamma}{\hbar^2} \left[T_{BEC} \frac{\alpha_3}{\gamma} \right]^{3/2} \]

\[\approx \frac{5}{2} \frac{\gamma^{3/2}}{\hbar^2 T_{BEC}} \approx 1.28 \frac{\gamma^{3/2}}{\hbar^2 T_{BEC}} \]

\[\Rightarrow Q_L \neq 0 \Rightarrow \text{first order phase transition} \]

- Compressibility \(\kappa_T = \left(\frac{\partial n}{\partial p} \right)_T \)

\[\frac{dp}{dz} = \frac{g k_B T}{\alpha_3} \frac{1}{2} f_{3/2}^+(z) \]

\[\frac{dn}{dz} = \frac{g}{\alpha_3} \frac{1}{2} f_{1/2}^+(z) \]

\[\text{using} \quad \frac{d}{dz} f_m^+(z) = \frac{1}{2} f_{m-1}^+(z) \quad \text{take ratio} \Rightarrow \kappa_T = f_{1/2}^+(z) \left[n k_B T f_{3/2}^+(z) \right]^{-1} \Rightarrow \infty \quad T \to T_{BEC} \]

\[\lim_{z \to 1} f_{1/2}^+(z) \Rightarrow \infty \]

\[\Rightarrow \text{since} \ \kappa_T \text{diverges as} \ T \to T_{BEC} \text{ this would be continuous or second order phase transition} \]