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Do We Need Quantum Mechanics to Understand

Phase Transitions at Finite Temperature?

dAlthough quantum mechanics is essential to understand the existence of ordered
phases of matter (e.g., superconductivity and magnetism are genuine quantum
effects), it turns out that quantum mechanics does not influence asymptotic critical
behavior of finite femperature phase transitions:

T ~ gz ~ |t| —V2ZThe decay time of temporal correlations for order-parameter fluctuations in dynamic

¢ (time-dependent) phenomena in the vicinity of critical point — critical slowing down

d A .. Inquantum systems static and dynamic fluctuations are not independent because the

ih— = [A H] Hamiltonian determined not only the partition function, but also the time evolution of
dt ? any obaservable via the Heisenber equation of motion

_ p» Thus, in quantum systems energy associated with the correlation time is also the
Ee = h/'ﬂ: ~ ‘t‘ typical fluctuation energy for static fluctuations, and it vanishes in the vicinity of
a continuous phase transition as a power law

This condition is always satisfied sufficiently close to T_, so that quantum effects are
b, K ali?B 1 washed out by thermal excitations and a purely classical description of order parameter
fluctuations is sufficient to calculate critical exponents

dPhase transitions in classical models are driven only by thermal fluctuations,

as classical systems usually freeze into a fluctuationless ground state at 7= 0.

dIn contrast, quantum systems have fluctuations driven by the Heisenberg
uncertainty principle even in the ground state, and these can drive interesting

phase transitions at 7= 0.
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Formal Definition of
Quantum Phase Transitions

AN avoided level-crossing between the ground and an excited state in a finite
lattice could become progressively sharper as the lattice size increases, leading to
a nonanalyticity at § = gc in the infinite lattice limit.

JAny point of nonanalyticity in the ground state energy of the infinite lattice
system signifies quantum phase fransition.
L The nonanalyticity could be either the limiting case of an avoided level-crossing

or an actual level-crossing.
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Experimental Example: Quantum Criticality in

Heavy Fermion Materials

OQuantum criticality describes the collective fluctuations of matter undergoing a
second-order phase transition at zero temperature.
HdHeavy-fermion metals have in recent years emerged as prototypical systems to

study quantum critical points.
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QKey characteristics of of both
CeCu; 4Auy; and YbRh,Si, is the
divergence of the effective charge-
carrier mass at the quantum critical
point.

Flgure 1 Quantum critical points in HF metals. a, AF ordering temperature T, versus
Au concentration x for CeCug_,Au, (ref. 7), showing a doping-induced QCP.
b, Suppression of the magnetic ordering in YbRh,Si; by a magnetic field. Also shown

: is the evolution of the exponent e in A p = p(T) — oo ox T®, within the
| temperature—field phase diagram of YbRh.Si; (ref. 55). Blue and orange regions
{ mark o =2 and 1, respectively. ¢, Linear temperature dependence of the electrical

resistivity for Ge-doped YbRh,Si; over three decades of temperature (ref. 55),

1 demonstrating the robustness of the non-Fermi-liquid (NFL) behaviour in the
| quantum-critical regime. d, Temperafure-versus-pressure phase diagram for
| CePd,Si,, illustrating the emergence of a superconducting phase centred around the

(1CP. The Néel (T,) and superconducting (T;) ordering temperatures are indicated by
filled and open symbols, respectively™.
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Experimental Example: Quantum Criticality in

High-Temperature Cuprate SuperconducTors
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Experimental Example: Quantum Criticality in

Iron-Based Pnictide Superconductors
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Example: Anderson Localization
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Order Parameter and Scaling in
Anderson Localization

EUROPHYSICS LETTERS
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Europhys. Lett., 62 (1), pp. 76-82 (2003) é‘; I q‘ﬂw%ﬂh =158
Typical medium theory of Anderson localization: = 10 e meaag,, |
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Fig. 1 — Typical and average DOS as a function of disorder W, for a three-dimensional cubic lattice
at the band center (w = 0). Results from exact numerical calculations (circles) are compared to the
predictions of TMT (for TDOS, full line) and CPA (for ADOS, dashed line). Finite-size scaling of the
numerical data in the critical region W = 1.17-1.58, and sizes [ = 4-12 is shown in the inset, where
peyp (W, L)/ pryp(We, L) is plotted as a function of &(W)/L, and &(W) = 0.5|(W. — W) /W,|™" is the

correlation length in units of the lattice spacing. The numerical data are consistent with 3 = v = 1.58.
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Example: Mott-Hubbard

Metal-Insulator Transition
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Simple Theoretical Model I: Quantum

Criticality in Quantum Ising Chain (CoNb;0O;)

Phys. Today 64(2), 29 (2011) Quanfum Ising chain in
transverse external magnetic field

o}n ) H——Jzﬁqﬂfﬂ_l—qz

= V.. J:>Or;>{}

Each ion has two possible states:

Transverse magnetic field strength

oy 2D 6z11) =+ 6zl = —N)
é é é é é é s o —on i o o The first term in the Hamiltonian prefers
§ % § % % % that the spins on neighboring ions are parallel
SRSAIEHD prsgnct to each other, whereas the second allows
agnet quantum Tunnelmg between ’rhelT) and H,)
3 »  states with amplitude proportional to g
0} =11 ® ;l;)z QNN 0) =21 ®[2)2--®|2)nN
0) =1 ®N)2---® |¢)N | =) = (s + i)/ V2
im0 18 0 = (0167 5510) ~ e7leemeVe
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Simple Theoretical Model IT: Quantum

Criticality in Dimer Antiferromagnet (TiCuCl;)

Experiment: Phys. Rev. Lett. 100, 205701 (2008)
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O TheAwo noncritical ground states of th

dimer antiferromagnet have very different excitation spectra:

spin waves with nearly zero energy
and oscillations of the magnitude of
local magnetization

0y =] ®ls)i [s)e = (1)) —WtH)/V2  [ta)s = 1)

T — [to)s = (1) + 1)) /v2
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How Quantum Criticality

Extends to Non-Zero Temperatures
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O In the blue region for small g,
thermal effects induce spin waves
that distort the Néel
antiferromagnetic ordering.

QFor large g, thermal fluctuations
break dimers in the blue region and
form quasiparticles called triplons, as
described in box 1. The dynamics of
both types of excitations can be
described quasi-classically.
HdQuantum criticality appears in the
intermediate orange region, where
there is no description of the
dynamics in terms of either classical
particles or waves. Instead, the
system exhibits the strongly coupled
dynamics of nontrivial entangled
quantum excitations of the quantum
critical point g,.
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Scaling in the Vicinity of
Quantum Critical Points

T T

thermally
disordered

classical
quantum critical quantum

thermally
disordered

disordered disordered
f 1V ale’ "F — Tc‘yz ordered
ordered QCP X .
U flt- T — 0 -rC ’r‘ D '_r‘c .r

JZ = /D[fb] exp —./Ol/Td'rderﬂ[(I)(r,'r)]

represents fluctuations of the order parameter and it depends on the imaginary time T
(I)(I‘, 7‘) which takes values in the interval [0,1/T]; the imaginary time direction acts like an extra
dimension, which becomes infinite for " — 00

T=0: fung(G,h)=0b"PF)f. (bY2G,b¥") G = |9 — gel/9e
T > 0: fsing(G, h, T) = b_(D+z)fsing(byg G, byh, sz) ]./yg =V
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Example: Superconduc‘ror—Insula’ror

Transition in Thln Fulms

Rc h/4e — 6450 ) Phys. Today 51(11), 39 (1998)
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Experimental Example: Superfluid to a Mott

Insulator QPT in a Gas of Ultracold Atoms

Superfluid state
with coherence,
Mott insulator
state without
coherence, and
superfluid state
after restoring the
coherence

Switch off the optical lattice beams, so that the localized wavefunctions at
each lattice site can expand and interfere with each other. They form a

= = multiple matter wave interference pattern which reveals the momentum
distribution of the system. The sharp and discrete peaks observed
- directly prove the phase coherence

across the entire lattice

3D lattice
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Experimental Example: Superfluid to a Mott

Insulator QPT in a Gas of Ultracold Atoms

Bose-Hubbard Hamiltonian for periodic lattice potential
o i ] -, o
H=-J) da,+ Y en+ : Uy n(n,-1)
Li > i i

Tunnel matrixelement On-site interaction energy L

J= —J-a'jxw{x—x,}[— A Vv? +VM{X}]H-’(I—IJ.} = Axha J':J'“.'r: “{x}q
2m m

Experimental proof for the Mott insulator phase rather
than statistically dephased superfluid state (i.e.,

o g e
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kinetic energy term dominates:
Weakly interacting bosonic gas

-> Superfluidity

» Atoms are delocalized
over the entire lattice

ﬂJ{iﬁﬁm

i=l

* Coherence,
manybody state can be described
by a2 macroscopic wavefunction

(al.) 20

# Coherent state
Superposition with a Binomial atom
number distribution per lattice site
-= number fluctuations

» Gapless excitation spectrum

Gt

interaction energy term dominates:

Strongly corrolated bosonic system

-> Mott insulator

» Atoms are completely localized
to lattice sites

) =TT 0)

® No coherence, no
macroscopic wavefunction

(a;)=0

* Fock state
with a vanishing number
fluctuation per lattice site

» Excitation spectrum has an
energygapA=U
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Quantum criticality

Subir Sachdev and Bernhard Keimer

A phase transition brought on by quantum fluctuations at absolute zero

But it is the key to explaining a wide variety of experiments.

Subir Sachdev is a professor of physics at Harvard University in Cambridge, Massachusetts. Bernhard Keimer is a director of the Max
Planck Institute for Solid State Research in Stuttgart, Germany.
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may seem like an abstract theoretical idea of litlle practical consequence.
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