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Do We Need Quantum Mechanics to Understand

Phase Transitions at Finite Temperature?

dAlthough quantum mechanics is essential to understand the existence of ordered
phases of matter (e.g., superconductivity and magnetism are genuine quantum
effects), it turns out that quantum mechanics does not influence asymptotic critical
behavior of finite femperature phase transitions:

T ~ gz ~ |t| —V2ZThe decay time of temporal correlations for order-parameter fluctuations in dynamic

¢ (time-dependent) phenomena in the vicinity of critical point — critical slowing down

d A .. Inquantum systems static and dynamic fluctuations are not independent because the

ih— = [A H] Hamiltonian determined not only the partition function, but also the time evolution of
dt ? any obaservable via the Heisenber equation of motion

_ p» Thus, in quantum systems energy associated with the correlation time is also the
Ee = h/'ﬂ: ~ ‘t‘ typical fluctuation energy for static fluctuations, and it vanishes in the vicinity of
a continuous phase transition as a power law

This condition is always satisfied sufficiently close to T_, so that quantum effects are
b, K ali?B 1 washed out by thermal excitations and a purely classical description of order parameter
fluctuations is sufficient to calculate critical exponents

dPhase transitions in classical models are driven only by thermal fluctuations,

as classical systems usually freeze into a fluctuationless ground state at 7= 0.

dIn contrast, quantum systems have fluctuations driven by the Heisenberg
uncertainty principle even in the ground state, and these can drive interesting

phase transitions at 7= 0.
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Formal Definition of
Quantum Phase Transitions
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AN avoided level-crossing between the ground and an excited state in a finite
lattice could become progressively sharper as the lattice size increases, leading to
a nonanalyticity at g = ge¢ in the infinite lattice limit.

JAny point of nonanalyticity in the ground state energy of the infinite lattice
system signifies quantum phase fransition.

L The nonanalyticity could be either the limiting case of an avoided level-crossing
or an actual level-crossing.
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Simple Theoretical Model I: Quantum

Criticality in Quantum Ising Chain (CoNb;0O;)

Phys. Today 64(2), 29 (2011) Quanfum Ising chain in
transverse external magnetic field

o}n ) H——Jzﬁqﬂfﬂ_l—qz
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Each ion has two possible states:

Transverse magnetic field strength
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agnet quantum Tunnelmg between ’rhelT) and H,)
3 »  states with amplitude proportional to g
0} =11 ® ;l;)z QNN 0) =21 ®[2)2--®|2)nN
0) =1 ®N)2---® |¢)N | =) = (s + i)/ V2
im0 18 0 = (0167 5510) ~ e7leemeVe

PHYS813: Quantum Statistical Mechanics Quantum phase transitions



Simple Theoretical Model IT: Quantum

Criticality in Dimer Antiferromagnet (TiCuCl;)

Experiment: Phys. Rev. Lett. 100, 205701 (2008)
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O TheAwo noncritical ground states of th

dimer antiferromagnet have very different excitation spectra:

spin waves with nearly zero energy
and oscillations of the magnitude of
local magnetization
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Phys. Today 64(2), 29 (2011)
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How Quantum Criticality

Extends to Non-Zero Tem
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O In the blue region for small g, thermal effects
induce spin waves that distort the Néel
antiferromagnetic ordering.

QFor large g, thermal fluctuations break dimers in
the blue region and form quasiparticles called
triplons. The dynamics of both types of excitations
can be described quasi-classically.

HdQuantum criticality appears in the intermediate
orange region, where there is no description of the
dynamics in ferms of either classical particles or
waves. Instead, the system exhibits the strongly
coupled dynamics of nontrivial entangled quantum
excitations of the quantum critical point g..
LQWavefunction at g=g, is a complex superposition
of an exponentially large set of configurations
fluctuating at all length scales — the critical point
wavefunction, which cannot be written down
explicitly, has long-range quantum entanglement
which emerges for a very large number of electrons
and between electrons separated at all length
scales.

Quantum phase transitions




Scaling in the Vicinity of

Quantum Critical Points

T 1 physics is dominated by thermal excitations 4
of the quantum critical ground state
thermally
disordered
classical
thermally quantum critical quantum
disordered disordered disordered
kBT: A ‘T—Tc‘uz ordered
ordered QCP X .
0 atT=0 r 0 e r
C

JZ = /D[fb] exp —./Ol/Td'rderﬂ[(I)(r,'r)]

represents fluctuations of the order parameter and it depends on the imaginary time T
(I)(I‘, 7‘) which takes values in the interval [0,1/T]; the imaginary time direction acts like an extra
dimension, which becomes infinite for " — 00

T=0: fung(G,h)=0b"PF)f. (bY2G,b¥") G = |9 — gel/9e
T > 0: fsing(G, h, T) = b_(D+z)fsing(byg G, byh, sz) ]./yg =V

PHYS813: Quantum Statistical Mechanics Quantum phase transitions



Example of Scaling Analysis:

Superconductor-Insulator QPT in Thm Films

Rc h/4e — 6450 ) Phys. Today 51(11), 39 (1998)
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The success of finite-size
scaling analyses of the
superconductor-
insulator fransitions as a
function of film thickness or
applied magnetic field
provides strong evidence
that 7 =0 quantum phase
transitions are occurring
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Experimental Example: Quantum Criticality in

Heavy Fermion Materials

OQuantum criticality describes the collective fluctuations of matter undergoing a
second-order phase transition at zero temperature.
HdHeavy-fermion metals have in recent years emerged as prototypical systems to

study quantum critical points.
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Nature Phys. 4, 186 (2008)
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QKey characteristics of of both
CeCu; 4Auy; and YbRh,Si, is the
divergence of the effective charge-
carrier mass at the quantum critical
point.

Flgure 1 Quantum critical points in HF metals. a, AF ordering temperature T, versus
Au concentration x for CeCug_,Au, (ref. 7), showing a doping-induced QCP.
b, Suppression of the magnetic ordering in YbRh,Si; by a magnetic field. Also shown

: is the evolution of the exponent e in A p = p(T) — oo ox T®, within the
| temperature—field phase diagram of YbRh.Si; (ref. 55). Blue and orange regions
{ mark o =2 and 1, respectively. ¢, Linear temperature dependence of the electrical

resistivity for Ge-doped YbRh,Si; over three decades of temperature (ref. 55),

1 demonstrating the robustness of the non-Fermi-liquid (NFL) behaviour in the
| quantum-critical regime. d, Temperafure-versus-pressure phase diagram for
| CePd,Si,, illustrating the emergence of a superconducting phase centred around the

(1CP. The Néel (T,) and superconducting (T;) ordering temperatures are indicated by
filled and open symbols, respectively™.
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Experimental Example: Quantum Criticality in

High-Temperature Cuprate SuperconducTors
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Experimental Example: Quantum Criticality in

Iron-Based Pnictide Superconductors

2.1

TEMPERATURE (K}

L2 0.4 (L
I | Gl BN R

PHYS813: Quantum Statistical Mechanics Quantum phase transitions



Historical Example: Anderson Localization
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Order Parameter and Scaling in
Anderson Localization

EUROPHYSICS LETTERS
B -
Europhys. Lett., 62 (1), pp. 76-82 (2003) é‘; I q‘ﬂw%ﬂh =158
Typical medium theory of Anderson localization: = 10 e meaag,, |
A local order parameter approach = i il
- 2 — ~a
to strong-disorder effects = n,m"ﬁ
=)
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Fig. 1 — Typical and average DOS as a function of disorder W, for a three-dimensional cubic lattice
at the band center (w = 0). Results from exact numerical calculations (circles) are compared to the
predictions of TMT (for TDOS, full line) and CPA (for ADOS, dashed line). Finite-size scaling of the
numerical data in the critical region W = 1.17-1.58, and sizes [ = 4-12 is shown in the inset, where
peyp (W, L)/ pryp(We, L) is plotted as a function of &(W)/L, and &(W) = 0.5|(W. — W) /W,|™" is the

correlation length in units of the lattice spacing. The numerical data are consistent with 3 = v = 1.58.

PHYS813: Quantum Statistical Mechanics Quantum phase transitions



Historical Example: Mott-Hubbard

Metal-Insulator Transition

electron transfer integral # d— o« (atomic limit with no
" kinetic energy gain): insulator
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Nature 415, 39 (2002)

Experimental Example: Superfluid-Mott

Insulator QPT in a Gas of Ultracold Atoms

Superfluid state
with coherence —
Mott insulator
state without
coherence —
superfluid state
after restoring the
coherence

Switch off the optical lattice beams, so that the localized wavefunctions at
each lattice site can expand and interfere with each other. They form a
multiple matter wave interference pattern which reveals the momentum

distribution of the system.

2ns 6ms 10 ns 14ms
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18 ms

The sharp and discrete peaks observed
directly prove the phase coherence
across the entire lattice

3D lattice
—
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Theoretical Explanation of Superfluid-Mott

Insulator QPT in a Gas of Ultracold Atoms

Bose-Hubbard Hamiltonian for periodic lattice potential
o i ] -, o
H=-J) da,+ Y en+ : Uy n(n,-1)
Li > i i

Tunnel matrixelement On-site interaction energy L

J= —J-a'jxw{x—x,}[— A Vv? +VM{X}]H-’(I—IJ.} = Axha J':J'“.'r: “{x}q
2m m

Experimental proof for the Mott insulator phase rather
than statistically dephased superfluid state (i.e.,

o g e
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kinetic energy term dominates:
Weakly interacting bosonic gas

-> Superfluidity

» Atoms are delocalized
over the entire lattice

ﬂJ{iﬁﬁm

i=l

* Coherence,
manybody state can be described
by a2 macroscopic wavefunction

(al.) 20

# Coherent state
Superposition with a Binomial atom
number distribution per lattice site
-= number fluctuations

» Gapless excitation spectrum

Gt

interaction energy term dominates:

Strongly corrolated bosonic system

-> Mott insulator

» Atoms are completely localized
to lattice sites

) =TT 0)

® No coherence, no
macroscopic wavefunction

(a;)=0

* Fock state
with a vanishing number
fluctuation per lattice site

» Excitation spectrum has an
energygapA=U
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Quantum criticality
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A phase transition brought on by quantum fluctuations at absolute zero
may seem like an abstract theoretical idea of little practical consequence.
But it is the key to explaining a wide variety of experiments.
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Quantum criticality in heavy-fermion metals

Cluantum criticality describes the collective fluctuations of matter undergoing a second-order phase
transition at zero temperature. Heavy-fermion metals have in recent years emenged as prototypical
systems to study quanturm critical points. There have been considerable efforts, both experimental and
theorstical, that use these magnetic systems to address problerms that are central to the broad
understanding of strongly comelated guantum matter. Here, we summarize some of the basic issues,
including the extent to which the gquantum criticality in heavy-fermion metals goes beyond the standard
theory of order-parameter fluctuations, the nature of the Kondo effect in the quanturm-critical reginne, the
non-Femmi-liquid phenomena that accompany quantum criticality and the interplay between quantum

criticality and unconventional superconductivity.
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Observation of Quantum Criticality with
Ultracold Atoms in Optical Lattices

Xibo Zhang,* Chen-Lung Hung, Shih-Kuang Tung, Cheng Chin*

masses are hundreds of
mpanving the large effective

Quantum criticality emerges when a many-body system is in the proximity of a continuous

phase transition that is driven by quantum fluctuations. In the quantum critical regime, exotic,
yet universal properties are anticipated; ultracold atoms provide a clean system to test these
predictions. We report the observation of quantum criticality with two-dimensional Bose gases

in optical lattices. On the basis of in situ density measurements, we observe scaling behavior of
the equation of state at low temperatures, locate the quantum critical point, and constrain the
critical exponents. We observe a finite critical entropy per particle that carries a weak dependence
on the atomic interaction strength. Our experiment provides a prototypical method to study
quantum criticality with ultracold atoms.
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