Mathematica: Difference between revisions
From phys813
Jump to navigationJump to search
(5 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
*[https://iopscience.iop.org/article/10.1088/1742-6596/698/1/012019/pdf QUANTUM] | *[https://iopscience.iop.org/article/10.1088/1742-6596/698/1/012019/pdf QUANTUM] | ||
*[https://www.wolframcloud.com/obj/wolframquantumframework/DeployedResources/Paclet/Wolfram/QuantumFramework/Documentation/tutorial/GettingStarted.html Wolfram Quantum Framework] | *[https://www.wolframcloud.com/obj/wolframquantumframework/DeployedResources/Paclet/Wolfram/QuantumFramework/Documentation/tutorial/GettingStarted.html Wolfram Quantum Framework] | ||
*[https://resources.wolframcloud.com/FunctionRepository/resources/MatrixPartialTrace/ Matrix Partial Trace] | *[https://resources.wolframcloud.com/FunctionRepository/resources/MatrixPartialTrace/ Matrix Partial Trace] calling via ResourceFunction | ||
== Hands-on Tutorials by the Instructor == | == Hands-on Tutorials by the Instructor == | ||
Line 12: | Line 12: | ||
== Mathematica Notebooks for Statistical Mechanics == | == Mathematica Notebooks for Statistical Mechanics == | ||
*[[Media:black_body_bkn.nb|Black-body radiation: Classical vs. quantum statistical mechanics approach]] | *[[Media:black_body_bkn.nb|Black-body radiation: Classical vs. quantum statistical mechanics approach]] | ||
*Essential quantum concepts using spin examples: Quantum states (vectors or density matrices), operators as observables, probabilities and expectation values | |||
*Sommerfeld expansion | *Sommerfeld expansion | ||
**B. Cowan, On the chemical potential of ideal Fermi and Bose gases, J. Low Temp. Phys. '''197''', 412 (2019). [https://link.springer.com/article/10.1007/s10909-019-02228-0 | [PDF and Mathematica notebooks]] | **B. Cowan, On the chemical potential of ideal Fermi and Bose gases, J. Low Temp. Phys. '''197''', 412 (2019). [https://link.springer.com/article/10.1007/s10909-019-02228-0 | [PDF and Mathematica notebooks]] |
Latest revision as of 21:17, 21 May 2024
Hands-on Tutorials by Wolfram
Quantum Packages
- QUANTUM
- Wolfram Quantum Framework
- Matrix Partial Trace calling via ResourceFunction
Hands-on Tutorials by the Instructor
Mathematica Notebooks for Statistical Mechanics
- Black-body radiation: Classical vs. quantum statistical mechanics approach
- Essential quantum concepts using spin examples: Quantum states (vectors or density matrices), operators as observables, probabilities and expectation values
- Sommerfeld expansion
- B. Cowan, On the chemical potential of ideal Fermi and Bose gases, J. Low Temp. Phys. 197, 412 (2019). | [PDF and Mathematica notebooks]