|
|
(140 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| == Problem 1 ==
| |
|
| |
|
| The Hamiltonian for an electron spin degree of freedom in the external magnetic field <math> \mathbf{B} </math> is given by:
| |
|
| |
| <math> \hat{H} = - \mu_B \vec{\sigma} \cdot \mathbf{B} </math>
| |
|
| |
| where <math> \mu_B </math> is the Bohr magneton </math> and <math> \vec{\sigma}=(\hat{\sigma}_x,\hat{\sigma}_y,\hat{\sigma}_z) </math> is the vector of the Pauli matrices:
| |
|
| |
| <math> \hat{\sigma}_x =
| |
| \begin{pmatrix}
| |
| 0 & 1 \\
| |
| 1 & 0
| |
| \end{pmatrix},
| |
| </math>
| |
|
| |
| <math> \hat{\sigma}_x =
| |
| \begin{pmatrix}
| |
| 0 & -i \\
| |
| i & 0
| |
| \end{pmatrix},
| |
| </math>
| |
|
| |
| <math> \hat{\sigma}_x =
| |
| \begin{pmatrix}
| |
| 1 & 0 \\
| |
| 0 & -1
| |
| \end{pmatrix}.
| |
| </math>
| |
|
| |
| (a) In the quantum canonical ensemble, evaluate the density matrix if <math> \mathbf{B} </math> is along the ''z'' axis.
| |
|
| |
| (b) Repeat the calculation from (a) assuming that <math> \mathbf{B} </math> points along the ''x'' axis.
| |
|
| |
| (c) Calculate the average energy in each of the above cases.
| |
|
| |
| == Problem 2 ==
| |