Temporary HW: Difference between revisions

From phys813
Jump to navigationJump to search
Line 25: Line 25:
<math> g(T,m) = a(T) + \frac{b(T)}{2}m^2 + \frac{c(T)}{4} m^4 - hm </math>
<math> g(T,m) = a(T) + \frac{b(T)}{2}m^2 + \frac{c(T)}{4} m^4 - hm </math>


show that isothermal susceptibility <math> \chi = (\partial m/\partial h)_T is given by <math> \chi = 1/b_0(T-T_c) </math> for <math> T>T_c </math> and <math> \chi = 1/b_0(T-T_c) </math> for <math> T>T_c </math>, so that critical exponent <math> \gamma =1 </math> according to Landau mean-field theory. HINT: Find the value of the order parameter <math> m </math> which minimizes <math> g(T,m) </math> and use <math> b=b_0 (T-T_c) <math>.
show that isothermal susceptibility <math> \chi = (\partial m/\partial h)_T </math> is given by <math> \chi = 1/b_0(T-T_c) </math> for <math> T>T_c </math> and <math> \chi = 1/b_0(T-T_c) </math> for <math> T>T_c </math>, so that critical exponent <math> \gamma =1 </math> according to Landau mean-field theory. HINT: Find the value of the order parameter <math> m </math> which minimizes <math> g(T,m) </math> and use <math> b=b_0 (T-T_c) <math>.


(b) Show that <math> cm^3 = h </math> at the critical point, and hence critical exponent <math> \delta = 3 </math> where
(b) Show that <math> cm^3 = h </math> at the critical point, and hence critical exponent <math> \delta = 3 </math> where

Revision as of 17:17, 29 April 2011

Problem 1: Ginzburg criterion in arbitrary spatial dimension and upper critical dimension

The general solution for the correlation function in arbitrary spatial dimension within the mean-field theory can be written as:

assuming that distance is much larger than the lattice spacing .

(a) Generalize the Ginzburg criterion

for the validity of the mean-field theory to arbitrary spatial dimension to show that it is satisfied if

.

where and are critical exponents for describing vanishing of the order parameter and divergence of the correlation length , respectively.

(b) Using your result in (a), find the upper critical dimension for the Ising model above which its critical behavior near temperature is well-described by the mean-field theory.

Problem 2: Predictions of the Landau theory for the critical exponents and

(a) Starting from the Gibbs free energy density in Landau theory:

show that isothermal susceptibility is given by for and for , so that critical exponent according to Landau mean-field theory. HINT: Find the value of the order parameter which minimizes and use at the critical point, and hence critical exponent where

Problem 3: Renormalization group for 1D Ising model using transfer matrix method

The partition function for the N-spin Ising chain can be written as the trace of the N-th power of the transfer matrix T. Another way to reduce the number of degrees of freedom is the describe the system in terms of two-spin cells, where the partition function is written as:

The transfer matrix for two-spin cells, , can be written as: