Homework Set 3: Difference between revisions

From phys814
Jump to navigationJump to search
No edit summary
Line 33: Line 33:
the spin:
the spin:


<math> \hat{H} = \sum_{\mathbf{k},\sigma} (\varepsilon_\mathbf{k} - \mu - \sigma \mu_B B) \hat{c}^\dagger_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma}} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \hat{c}^\dagger_{\mathbf{k}' \uparrow} \hat{c}_{-\mathbf{k}' \downarrow}} \hat{c}_{-\mathbf{k} \downarrow} \hat{c}_{\mathbf{k} \uparrow}}
<math> \hat{H} = \sum_{\mathbf{k},\sigma} (\varepsilon_\mathbf{k} - \mu - \sigma \mu_B B) \hat{c}^\dagger_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \hat{c}^\dagger_{\mathbf{k}' \uparrow} \hat{c}_{-\mathbf{k}' \downarrow}} \hat{c}_{-\mathbf{k} \downarrow} \hat{c}_{\mathbf{k} \uparrow}}
</math>
</math>

Revision as of 06:48, 2 November 2019

Problem 1: Action on fermionic creation and annihilation operators on Fock states

Using the following convention

|11111000=c^5c^4c^3c^2c^1|vacuum

where |vacuum>=|0000:

(a) Evaluate c^3c^6c^4c^6c^3|111110000.

(b) Write |1101100100 in terms of excitations about the "filled Fermi sea" |1111100000. Interpret your answer in terms of electron and hole excitations.

(c) Find Φ|N^|Φ, where |Φ=A|100+B|111000 and N^=ic^i+c^i is the operator of the total particle number.

Problem 2: Density-density correlation function for noninteracting electrons

The pair correlation function gives the relative probability of finding a particle at position 𝐫 if we know that there is one at position 𝐫. It is defined by:

G(𝐫𝐫)=Φ(𝐫)|Ψ^(𝐫)Ψ^(𝐫)|Φ(𝐫)=Φ0|Ψ^(𝐫)Ψ^(𝐫)Ψ^(𝐫)Ψ^(𝐫)|Φ0

Here |Φ(𝐫)=Ψ^(𝐫)|Φ0 is a state with N1 particles, obtained after removal of one particle at position 𝐫, so that pair correlation function is computed as the expectation value of the density operator in this new quantum state. Compute the pair correlation function for a system of translationally invariant noninteracting spinless bosons in many-body state

|Φ0=|n𝐤0,n𝐤1,

by transforming field operators to creation and annihilation operators in momentum representation while assuming that bosons are enclosed in a box of volume V with periodic boundary conditions. Your final result should be a function of 𝐫,𝐫 and sums over n𝐤, where you can also use that

Φ0|Ψ^(𝐫)Ψ^(𝐫)|Φ0=1V𝐤n𝐤=N.

Problem 3:

Problem 4: BSC superconductor in Zeeman field

Consider BCS Hamiltonian in the presence of a magnetic field 𝐁=B𝐞z coupling only to the spin:

Failed to parse (syntax error): {\displaystyle \hat{H} = \sum_{\mathbf{k},\sigma} (\varepsilon_\mathbf{k} - \mu - \sigma \mu_B B) \hat{c}^\dagger_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \hat{c}^\dagger_{\mathbf{k}' \uparrow} \hat{c}_{-\mathbf{k}' \downarrow}} \hat{c}_{-\mathbf{k} \downarrow} \hat{c}_{\mathbf{k} \uparrow}} }