Lectures: Difference between revisions
From phys814
Jump to navigationJump to search
| Line 35: | Line 35: | ||
===References=== | ===References=== | ||
A. Eckardt and E. Anisimovas, ''High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective'', New J. Phys. '''17''', 093039 (2015). [https://iopscience.iop.org/article/10.1088/1367-2630/17/9/093039/pdf [PDF]]. | * A. Eckardt and E. Anisimovas, ''High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective'', New J. Phys. '''17''', 093039 (2015). [https://iopscience.iop.org/article/10.1088/1367-2630/17/9/093039/pdf [PDF]]. | ||
== Lecture 6: Berry phase for time-dependent quantum systems == | == Lecture 6: Berry phase for time-dependent quantum systems == | ||
Revision as of 07:25, 13 September 2019
Lecture 1: Second quantization formalism for harmonic oscillator
- Example: Coherent (quasiclassical) and squeezed states.
- Example: Isotropic three-dimensional harmonic oscillator.
- Example: Phonons in solids.
References
- Chapter 1.9 and 7.1 of Nazarov & Danon textbook.
Lecture 2: Second quantization formalism for bosons
- Example: Magnons in ferromagnets and antiferromagnets.
- Example: Bogoliubov theory of superfluidity.
References
- Chapters 3, 4.5 and 6 of Nazarov & Danon textbook.
- W. E. Lawrence, Algebraic identities relating first- and second-quantized operators, Am. J. Phys. 68, 167 (2000). [PDF]
Lecture 3: Second quantization formalism for fermions
- Example: Exact diagonalization of Hubbard clusters.
- Example: BCS theory of superconductivity.
- Example: Hartree-Fock theory of electrons in metals.
References
- Chapters 3 and 5 of Nazarov & Danon textbook.
Lecture 4: Time-dependent perturbation theory
- Example: Dyson vs. Magnus expansion for driven harmonic oscillator.
References
- Chapter 1 of Nazarov and Danon textbook.
- S. Blanes, F. Casas, J. A. Oteo, and J. Ros, A pedagogical approach to the Magnus expansion, Eur. J. Phys. 31, 907 (2010). [PDF]
Lecture 5: Floquet theory of periodically driven quantum systems
- Example: Periodically driven harmonic oscillator.
- Example: Floquet topological insulators.
References
- A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New J. Phys. 17, 093039 (2015). [PDF].
Lecture 6: Berry phase for time-dependent quantum systems
- Example: Spin in magnetic field.
- Example: Topological quantum computing.
References
- B. Holstein, The adiabatic theorem and Berry’s phase, Am. J. Phys. 57, 1079 (1989). [PDF]
- V. T. Lahtinen and J. K. Pachos, A short introduction to topological quantum computation, SciPost Phys. 3, 021 (2017). [PDF]
Lecture 7: Quantization of the electromagnetic field
- Example: Casimir effect.
- Example: Nonclassical light and photon statistics.
- Example: Light-matter interaction.
Lecture 8: Dissipative quantum mechanics with application to qubits
- Example: Damped harmonic oscillator.
- Example: Qubit coupled to dissipative environment.
References
- Chapters 11 and 12 of Nazarov & Danon textbook.
Lecture 9: Scattering theory
Lecture 10: Relativistic quantum mechanics
References
- Chapter 13 of Nazarov & Danon textbook.