Homework Set 3: Difference between revisions
No edit summary |
|||
| Line 9: | Line 9: | ||
'''(a)''' Evaluate <math> \hat{c}^\dagger_3 \hat{c}_6 \hat{c}_4 \hat{c}^\dagger_6 \hat{c}_3 |111110000 \ldots \rangle </math>. | '''(a)''' Evaluate <math> \hat{c}^\dagger_3 \hat{c}_6 \hat{c}_4 \hat{c}^\dagger_6 \hat{c}_3 |111110000 \ldots \rangle </math>. | ||
'''(b)''' Write <math> |1101100100 \ldots\rangle </math> in terms of excitations about the | '''(b)''' Write <math> |1101100100 \ldots\rangle </math> in terms of excitations about the "filled Fermi sea" <math> |1111100000 \ldots \rangle </math>. Interpret your answer in terms of electron and hole excitations. | ||
'''(c)''' Find <math> \langle \Phi |\hat{N} | \Phi \rangle </math>, where <math> |\Phi\rangle = A|100\rangle + B|111000\rangle </math> and <math> \hat{N} = \sum_i \hat{c}^\dagger_i + \hat{c}_i </math> is the operator of the total particle number. | '''(c)''' Find <math> \langle \Phi |\hat{N} | \Phi \rangle </math>, where <math> |\Phi\rangle = A|100\rangle + B|111000\rangle </math> and <math> \hat{N} = \sum_i \hat{c}^\dagger_i + \hat{c}_i </math> is the operator of the total particle number. | ||
==Problem 2: | ==Problem 2: Density-density correlation function for noninteracting electrons== | ||
The pair correlation function gives the relative probability of finding a particle at position <math> \mathbf{r}' </math> if we know that there is one at position <math> \mathbf{r} </math>. It is defined by: | The pair correlation function gives the relative probability of finding a particle at position <math> \mathbf{r}' </math> if we know that there is one at position <math> \mathbf{r} </math>. It is defined by: | ||
| Line 26: | Line 26: | ||
<math> \langle \Phi_0| \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}(\mathbf{r})|\Phi_0 \rangle = \frac{1}{V} \sum_\mathbf{k} n_\mathbf{k} = N </math>. | <math> \langle \Phi_0| \hat{\Psi}^\dagger(\mathbf{r}) \hat{\Psi}(\mathbf{r})|\Phi_0 \rangle = \frac{1}{V} \sum_\mathbf{k} n_\mathbf{k} = N </math>. | ||
==Problem 3: | ==Problem 3:== | ||
==Problem 4: BSC superconductor in Zeeman field== | |||
Consider BCS Hamiltonian in the presence of a magnetic field <math> \mathbf{B}=B\mathbf{e}_z </math> coupling only to | |||
the spin: | |||
<math> \hat{H} = \sum_{\mathbf{k},\sigma} (\varepsilon_\mathbf{k} - \mu - \sigma \mu_B B) \hat{c}^\dagger_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma}} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \hat{c}^\dagger_{\mathbf{k}' \uparrow} \hat{c}_{-\mathbf{k}' \downarrow}} \hat{c}_{-\mathbf{k} \downarrow} \hat{c}_{\mathbf{k} \uparrow}} | |||
</math> | |||
Revision as of 06:47, 2 November 2019
Problem 1: Action on fermionic creation and annihilation operators on Fock states
Using the following convention
where :
(a) Evaluate .
(b) Write in terms of excitations about the "filled Fermi sea" . Interpret your answer in terms of electron and hole excitations.
(c) Find , where and is the operator of the total particle number.
Problem 2: Density-density correlation function for noninteracting electrons
The pair correlation function gives the relative probability of finding a particle at position if we know that there is one at position . It is defined by:
Here is a state with particles, obtained after removal of one particle at position , so that pair correlation function is computed as the expectation value of the density operator in this new quantum state. Compute the pair correlation function for a system of translationally invariant noninteracting spinless bosons in many-body state
by transforming field operators to creation and annihilation operators in momentum representation while assuming that bosons are enclosed in a box of volume with periodic boundary conditions. Your final result should be a function of and sums over , where you can also use that
.
Problem 3:
Problem 4: BSC superconductor in Zeeman field
Consider BCS Hamiltonian in the presence of a magnetic field coupling only to the spin:
Failed to parse (syntax error): {\displaystyle \hat{H} = \sum_{\mathbf{k},\sigma} (\varepsilon_\mathbf{k} - \mu - \sigma \mu_B B) \hat{c}^\dagger_{\mathbf{k}\sigma} \hat{c}_{\mathbf{k}\sigma}} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \hat{c}^\dagger_{\mathbf{k}' \uparrow} \hat{c}_{-\mathbf{k}' \downarrow}} \hat{c}_{-\mathbf{k} \downarrow} \hat{c}_{\mathbf{k} \uparrow}} }