Lectures: Difference between revisions

From phys814
Jump to navigationJump to search
No edit summary
Line 1: Line 1:
== Lecture 1: Second quantization formalism for harmonic oscillator ==
== LECTURE 1: Second quantization formalism for harmonic oscillator ==
* Example: Coherent (quasiclassical) and squeezed states.
* Example: Coherent (quasiclassical) and squeezed states.
* Example: Isotropic three-dimensional harmonic oscillator.
* Example: Isotropic three-dimensional harmonic oscillator.
Line 7: Line 7:
*Chapter 1.9 and 7.1 of Nazarov & Danon textbook.
*Chapter 1.9 and 7.1 of Nazarov & Danon textbook.


== Lecture 2: Second quantization formalism for bosons ==
== LECTURE 2: Second quantization formalism for bosons ==
* Example: Pair distribution function, density-density correlation function and structure factor.
* Example: Pair distribution function, density-density correlation function and structure factor.
* Example: Magnons in ferromagnets and antiferromagnets.
* Example: Magnons in ferromagnets and antiferromagnets.
Line 19: Line 19:
*J. M. Zhang and R. X. Dong, ''Exact diagonalization: The Bose–Hubbard model as an example'', Eur. J. Phys. '''31''', 591 (2010). [https://iopscience.iop.org/article/10.1088/0143-0807/31/3/016 [PDF]]
*J. M. Zhang and R. X. Dong, ''Exact diagonalization: The Bose–Hubbard model as an example'', Eur. J. Phys. '''31''', 591 (2010). [https://iopscience.iop.org/article/10.1088/0143-0807/31/3/016 [PDF]]


== Lecture 3: Second quantization formalism for fermions ==  
== LECTURE 3: Second quantization formalism for fermions ==  
* Example: Hubbard dimer and trimer.
* Example: Hubbard dimer and trimer.
* Example: Mean-field magnetic phase diagram of Hubbard model.
* Example: Mean-field magnetic phase diagram of Hubbard model.
Line 32: Line 32:
* E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, ''Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons'', Phys. Rev. B '''100''', 100503(R) (2019). [https://doi.org/10.1103/PhysRevB.100.100503 [PDF]]
* E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, ''Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons'', Phys. Rev. B '''100''', 100503(R) (2019). [https://doi.org/10.1103/PhysRevB.100.100503 [PDF]]


== Lecture 4: Time-dependent perturbation theory: Dyson vs. Magnus series ==
== LECTURE 4: Time-dependent perturbation theory: Dyson vs. Magnus series ==
* Example: Dyson vs. Magnus expansion for driven harmonic oscillator.
* Example: Dyson vs. Magnus expansion for driven harmonic oscillator.


Line 39: Line 39:
* S. Blanes, F. Casas, J. A. Oteo, and J. Ros, ''A pedagogical approach to the Magnus expansion'', Eur. J. Phys. '''31''', 907 (2010). [http://personales.upv.es/serblaza/2010EJP.pdf [PDF]]
* S. Blanes, F. Casas, J. A. Oteo, and J. Ros, ''A pedagogical approach to the Magnus expansion'', Eur. J. Phys. '''31''', 907 (2010). [http://personales.upv.es/serblaza/2010EJP.pdf [PDF]]


== Lecture 5: Floquet theory of periodically driven quantum systems ==
== LECTURE 5: Floquet theory of periodically driven quantum systems ==
*Example: AC Stark effect for two-level atom in classical electromagnetic wave.
*Example: AC Stark effect for two-level atom in classical electromagnetic wave.
*Example: Floquet topological insulators.
*Example: Floquet topological insulators.
Line 50: Line 50:
*V. T. Lahtinen and J. K. Pachos, ''A short introduction to topological quantum computation'', SciPost Phys. '''3''', 021 (2017). [https://scipost.org/10.21468/SciPostPhys.3.3.021 [PDF]]
*V. T. Lahtinen and J. K. Pachos, ''A short introduction to topological quantum computation'', SciPost Phys. '''3''', 021 (2017). [https://scipost.org/10.21468/SciPostPhys.3.3.021 [PDF]]


== Lecture 6: Quantization of the electromagnetic field ==
== LECTURE 6: Quantization of the electromagnetic field ==
* Example: AC Stark effect for two-level atom in quantized electromagnetic field vs. Floquet theory.
* Example: AC Stark effect for two-level atom in quantized electromagnetic field vs. Floquet theory.
* Example: Nonclassical light and photon statistics.
* Example: Nonclassical light and photon statistics.
Line 58: Line 58:
*M. Haas, U. D. Jentschura, and C. H. Keitel, ''Comparison of classical and second quantized description of the dynamic Stark shift'', Am. J. Phys. '''74''', 77 (2006). [https://doi.org/10.1119/1.2140742 [PDF]]
*M. Haas, U. D. Jentschura, and C. H. Keitel, ''Comparison of classical and second quantized description of the dynamic Stark shift'', Am. J. Phys. '''74''', 77 (2006). [https://doi.org/10.1119/1.2140742 [PDF]]


== Lecture 7: Dissipative quantum mechanics with application to qubits ==
== LECTURE 7: Dissipative quantum mechanics with application to qubits ==
* Example: Damped harmonic oscillator.
* Example: Damped harmonic oscillator.
* Example: Qubit coupled to dissipative environment (spin-boson model).
* Example: Qubit coupled to dissipative environment (spin-boson model).
Line 65: Line 65:
* Chapters 11 and 12 of Nazarov & Danon textbook.
* Chapters 11 and 12 of Nazarov & Danon textbook.


== Lecture 8: Berry phase  for time-dependent quantum systems ==
== LECTURE 8: Berry phase  for time-dependent quantum systems ==
*Example: Spin in magnetic field.
*Example: Spin in magnetic field.
*Example: Topological quantum computing.  
*Example: Topological quantum computing.  


== Lecture 9: Scattering theory ==
== LECTURE 9: Scattering theory ==


===References===
===References===
* Chapter 19 of Shankar textbook.
* Chapter 19 of Shankar textbook.


== Lecture 10: Relativistic quantum mechanics ==
== LECTURE 10: Relativistic quantum mechanics ==


===References===
===References===
* Chapter 13 of Nazarov & Danon textbook and Chapter 20 of Shankar textbook.
* Chapter 13 of Nazarov & Danon textbook and Chapter 20 of Shankar textbook.

Revision as of 09:18, 5 December 2019

LECTURE 1: Second quantization formalism for harmonic oscillator

  • Example: Coherent (quasiclassical) and squeezed states.
  • Example: Isotropic three-dimensional harmonic oscillator.
  • Example: Phonons in solids.

References

  • Chapter 1.9 and 7.1 of Nazarov & Danon textbook.

LECTURE 2: Second quantization formalism for bosons

  • Example: Pair distribution function, density-density correlation function and structure factor.
  • Example: Magnons in ferromagnets and antiferromagnets.
  • Example: Bogoliubov theory of superfluidity.
  • Example: Bose-Hubbard model for cold atoms in optical lattices.

References

  • Chapters 3, 4.5 and 6 of Nazarov & Danon textbook.
  • W. E. Lawrence, Algebraic identities relating first- and second-quantized operators, Am. J. Phys. 68, 167 (2000). [PDF]
  • C. Timm, Lecture Notes on Theory of Magnetism
  • J. M. Zhang and R. X. Dong, Exact diagonalization: The Bose–Hubbard model as an example, Eur. J. Phys. 31, 591 (2010). [PDF]

LECTURE 3: Second quantization formalism for fermions

  • Example: Hubbard dimer and trimer.
  • Example: Mean-field magnetic phase diagram of Hubbard model.
  • Example: Mean-field vs. exact Richardson solution of BCS model of superconductivity.
  • Example: Hartree-Fock theory of electrons in metals.

References

  • Chapters 3 and 5 of Nazarov & Danon textbook.
  • C. Timm, Lecture Notes on Theory of Superconductivity
  • D. J. Carrascal, J. Ferrer, J. C. Smith, and K. Burke, The Hubbard dimer: A density functional case study of a many-body problem, J. Phys.: Condens. Matter 29, 019501 (2017). [PDF]
  • Y. Claveau, B. Arnaud and S. Di Matteo, Mean-field solution of the Hubbard model: the magnetic phase diagram, Eur. J. Phys. 35, 035023 (2014). [PDF]
  • E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons, Phys. Rev. B 100, 100503(R) (2019). [PDF]

LECTURE 4: Time-dependent perturbation theory: Dyson vs. Magnus series

  • Example: Dyson vs. Magnus expansion for driven harmonic oscillator.

References

  • Chapter 1 of Nazarov and Danon textbook.
  • S. Blanes, F. Casas, J. A. Oteo, and J. Ros, A pedagogical approach to the Magnus expansion, Eur. J. Phys. 31, 907 (2010). [PDF]

LECTURE 5: Floquet theory of periodically driven quantum systems

  • Example: AC Stark effect for two-level atom in classical electromagnetic wave.
  • Example: Floquet topological insulators.

References

  • A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New J. Phys. 17, 093039 (2015). [PDF].

References

  • B. Holstein, The adiabatic theorem and Berry’s phase, Am. J. Phys. 57, 1079 (1989). [PDF]
  • V. T. Lahtinen and J. K. Pachos, A short introduction to topological quantum computation, SciPost Phys. 3, 021 (2017). [PDF]

LECTURE 6: Quantization of the electromagnetic field

  • Example: AC Stark effect for two-level atom in quantized electromagnetic field vs. Floquet theory.
  • Example: Nonclassical light and photon statistics.
  • Example: Light-matter interaction.

References

  • M. Haas, U. D. Jentschura, and C. H. Keitel, Comparison of classical and second quantized description of the dynamic Stark shift, Am. J. Phys. 74, 77 (2006). [PDF]

LECTURE 7: Dissipative quantum mechanics with application to qubits

  • Example: Damped harmonic oscillator.
  • Example: Qubit coupled to dissipative environment (spin-boson model).

References

  • Chapters 11 and 12 of Nazarov & Danon textbook.

LECTURE 8: Berry phase for time-dependent quantum systems

  • Example: Spin in magnetic field.
  • Example: Topological quantum computing.

LECTURE 9: Scattering theory

References

  • Chapter 19 of Shankar textbook.

LECTURE 10: Relativistic quantum mechanics

References

  • Chapter 13 of Nazarov & Danon textbook and Chapter 20 of Shankar textbook.