Lectures: Difference between revisions
From phys814
Jump to navigationJump to search
No edit summary |
|||
| Line 1: | Line 1: | ||
== | == LECTURE 1: Second quantization formalism for harmonic oscillator == | ||
* Example: Coherent (quasiclassical) and squeezed states. | * Example: Coherent (quasiclassical) and squeezed states. | ||
* Example: Isotropic three-dimensional harmonic oscillator. | * Example: Isotropic three-dimensional harmonic oscillator. | ||
| Line 7: | Line 7: | ||
*Chapter 1.9 and 7.1 of Nazarov & Danon textbook. | *Chapter 1.9 and 7.1 of Nazarov & Danon textbook. | ||
== | == LECTURE 2: Second quantization formalism for bosons == | ||
* Example: Pair distribution function, density-density correlation function and structure factor. | * Example: Pair distribution function, density-density correlation function and structure factor. | ||
* Example: Magnons in ferromagnets and antiferromagnets. | * Example: Magnons in ferromagnets and antiferromagnets. | ||
| Line 19: | Line 19: | ||
*J. M. Zhang and R. X. Dong, ''Exact diagonalization: The Bose–Hubbard model as an example'', Eur. J. Phys. '''31''', 591 (2010). [https://iopscience.iop.org/article/10.1088/0143-0807/31/3/016 [PDF]] | *J. M. Zhang and R. X. Dong, ''Exact diagonalization: The Bose–Hubbard model as an example'', Eur. J. Phys. '''31''', 591 (2010). [https://iopscience.iop.org/article/10.1088/0143-0807/31/3/016 [PDF]] | ||
== | == LECTURE 3: Second quantization formalism for fermions == | ||
* Example: Hubbard dimer and trimer. | * Example: Hubbard dimer and trimer. | ||
* Example: Mean-field magnetic phase diagram of Hubbard model. | * Example: Mean-field magnetic phase diagram of Hubbard model. | ||
| Line 32: | Line 32: | ||
* E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, ''Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons'', Phys. Rev. B '''100''', 100503(R) (2019). [https://doi.org/10.1103/PhysRevB.100.100503 [PDF]] | * E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, ''Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons'', Phys. Rev. B '''100''', 100503(R) (2019). [https://doi.org/10.1103/PhysRevB.100.100503 [PDF]] | ||
== | == LECTURE 4: Time-dependent perturbation theory: Dyson vs. Magnus series == | ||
* Example: Dyson vs. Magnus expansion for driven harmonic oscillator. | * Example: Dyson vs. Magnus expansion for driven harmonic oscillator. | ||
| Line 39: | Line 39: | ||
* S. Blanes, F. Casas, J. A. Oteo, and J. Ros, ''A pedagogical approach to the Magnus expansion'', Eur. J. Phys. '''31''', 907 (2010). [http://personales.upv.es/serblaza/2010EJP.pdf [PDF]] | * S. Blanes, F. Casas, J. A. Oteo, and J. Ros, ''A pedagogical approach to the Magnus expansion'', Eur. J. Phys. '''31''', 907 (2010). [http://personales.upv.es/serblaza/2010EJP.pdf [PDF]] | ||
== | == LECTURE 5: Floquet theory of periodically driven quantum systems == | ||
*Example: AC Stark effect for two-level atom in classical electromagnetic wave. | *Example: AC Stark effect for two-level atom in classical electromagnetic wave. | ||
*Example: Floquet topological insulators. | *Example: Floquet topological insulators. | ||
| Line 50: | Line 50: | ||
*V. T. Lahtinen and J. K. Pachos, ''A short introduction to topological quantum computation'', SciPost Phys. '''3''', 021 (2017). [https://scipost.org/10.21468/SciPostPhys.3.3.021 [PDF]] | *V. T. Lahtinen and J. K. Pachos, ''A short introduction to topological quantum computation'', SciPost Phys. '''3''', 021 (2017). [https://scipost.org/10.21468/SciPostPhys.3.3.021 [PDF]] | ||
== | == LECTURE 6: Quantization of the electromagnetic field == | ||
* Example: AC Stark effect for two-level atom in quantized electromagnetic field vs. Floquet theory. | * Example: AC Stark effect for two-level atom in quantized electromagnetic field vs. Floquet theory. | ||
* Example: Nonclassical light and photon statistics. | * Example: Nonclassical light and photon statistics. | ||
| Line 58: | Line 58: | ||
*M. Haas, U. D. Jentschura, and C. H. Keitel, ''Comparison of classical and second quantized description of the dynamic Stark shift'', Am. J. Phys. '''74''', 77 (2006). [https://doi.org/10.1119/1.2140742 [PDF]] | *M. Haas, U. D. Jentschura, and C. H. Keitel, ''Comparison of classical and second quantized description of the dynamic Stark shift'', Am. J. Phys. '''74''', 77 (2006). [https://doi.org/10.1119/1.2140742 [PDF]] | ||
== | == LECTURE 7: Dissipative quantum mechanics with application to qubits == | ||
* Example: Damped harmonic oscillator. | * Example: Damped harmonic oscillator. | ||
* Example: Qubit coupled to dissipative environment (spin-boson model). | * Example: Qubit coupled to dissipative environment (spin-boson model). | ||
| Line 65: | Line 65: | ||
* Chapters 11 and 12 of Nazarov & Danon textbook. | * Chapters 11 and 12 of Nazarov & Danon textbook. | ||
== | == LECTURE 8: Berry phase for time-dependent quantum systems == | ||
*Example: Spin in magnetic field. | *Example: Spin in magnetic field. | ||
*Example: Topological quantum computing. | *Example: Topological quantum computing. | ||
== | == LECTURE 9: Scattering theory == | ||
===References=== | ===References=== | ||
* Chapter 19 of Shankar textbook. | * Chapter 19 of Shankar textbook. | ||
== | == LECTURE 10: Relativistic quantum mechanics == | ||
===References=== | ===References=== | ||
* Chapter 13 of Nazarov & Danon textbook and Chapter 20 of Shankar textbook. | * Chapter 13 of Nazarov & Danon textbook and Chapter 20 of Shankar textbook. | ||
Revision as of 09:18, 5 December 2019
LECTURE 1: Second quantization formalism for harmonic oscillator
- Example: Coherent (quasiclassical) and squeezed states.
- Example: Isotropic three-dimensional harmonic oscillator.
- Example: Phonons in solids.
References
- Chapter 1.9 and 7.1 of Nazarov & Danon textbook.
LECTURE 2: Second quantization formalism for bosons
- Example: Pair distribution function, density-density correlation function and structure factor.
- Example: Magnons in ferromagnets and antiferromagnets.
- Example: Bogoliubov theory of superfluidity.
- Example: Bose-Hubbard model for cold atoms in optical lattices.
References
- Chapters 3, 4.5 and 6 of Nazarov & Danon textbook.
- W. E. Lawrence, Algebraic identities relating first- and second-quantized operators, Am. J. Phys. 68, 167 (2000). [PDF]
- C. Timm, Lecture Notes on Theory of Magnetism
- J. M. Zhang and R. X. Dong, Exact diagonalization: The Bose–Hubbard model as an example, Eur. J. Phys. 31, 591 (2010). [PDF]
LECTURE 3: Second quantization formalism for fermions
- Example: Hubbard dimer and trimer.
- Example: Mean-field magnetic phase diagram of Hubbard model.
- Example: Mean-field vs. exact Richardson solution of BCS model of superconductivity.
- Example: Hartree-Fock theory of electrons in metals.
References
- Chapters 3 and 5 of Nazarov & Danon textbook.
- C. Timm, Lecture Notes on Theory of Superconductivity
- D. J. Carrascal, J. Ferrer, J. C. Smith, and K. Burke, The Hubbard dimer: A density functional case study of a many-body problem, J. Phys.: Condens. Matter 29, 019501 (2017). [PDF]
- Y. Claveau, B. Arnaud and S. Di Matteo, Mean-field solution of the Hubbard model: the magnetic phase diagram, Eur. J. Phys. 35, 035023 (2014). [PDF]
- E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons, Phys. Rev. B 100, 100503(R) (2019). [PDF]
LECTURE 4: Time-dependent perturbation theory: Dyson vs. Magnus series
- Example: Dyson vs. Magnus expansion for driven harmonic oscillator.
References
- Chapter 1 of Nazarov and Danon textbook.
- S. Blanes, F. Casas, J. A. Oteo, and J. Ros, A pedagogical approach to the Magnus expansion, Eur. J. Phys. 31, 907 (2010). [PDF]
LECTURE 5: Floquet theory of periodically driven quantum systems
- Example: AC Stark effect for two-level atom in classical electromagnetic wave.
- Example: Floquet topological insulators.
References
- A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New J. Phys. 17, 093039 (2015). [PDF].
References
- B. Holstein, The adiabatic theorem and Berry’s phase, Am. J. Phys. 57, 1079 (1989). [PDF]
- V. T. Lahtinen and J. K. Pachos, A short introduction to topological quantum computation, SciPost Phys. 3, 021 (2017). [PDF]
LECTURE 6: Quantization of the electromagnetic field
- Example: AC Stark effect for two-level atom in quantized electromagnetic field vs. Floquet theory.
- Example: Nonclassical light and photon statistics.
- Example: Light-matter interaction.
References
- M. Haas, U. D. Jentschura, and C. H. Keitel, Comparison of classical and second quantized description of the dynamic Stark shift, Am. J. Phys. 74, 77 (2006). [PDF]
LECTURE 7: Dissipative quantum mechanics with application to qubits
- Example: Damped harmonic oscillator.
- Example: Qubit coupled to dissipative environment (spin-boson model).
References
- Chapters 11 and 12 of Nazarov & Danon textbook.
LECTURE 8: Berry phase for time-dependent quantum systems
- Example: Spin in magnetic field.
- Example: Topological quantum computing.
LECTURE 9: Scattering theory
References
- Chapter 19 of Shankar textbook.
LECTURE 10: Relativistic quantum mechanics
References
- Chapter 13 of Nazarov & Danon textbook and Chapter 20 of Shankar textbook.