Lectures: Difference between revisions
From phys814
Jump to navigationJump to search
No edit summary |
|||
| Line 7: | Line 7: | ||
*Chapter 1.9 and 7.1 of Nazarov & Danon textbook. | *Chapter 1.9 and 7.1 of Nazarov & Danon textbook. | ||
== LECTURE 2: Second quantization formalism for bosons == | == LECTURE 2: Quantization of the electromagnetic field == | ||
* Example: AC Stark effect for two-level atom in quantized electromagnetic field vs. Floquet theory. | |||
* Example: Nonclassical light and photon statistics. | |||
* Example: Light-matter interaction. | |||
===References=== | |||
*[[Media:WYSIN=quantization_of_free_electromagnetic_field_photons_and_operators.pdf|Quantization of the free electromagnetic field: Photons and operators]] | |||
*M. Haas, U. D. Jentschura, and C. H. Keitel, ''Comparison of classical and second quantized description of the dynamic Stark shift'', Am. J. Phys. '''74''', 77 (2006). [https://doi.org/10.1119/1.2140742 [PDF]] | |||
== LECTURE 3: Second quantization formalism for bosons == | |||
* Example: Pair distribution function, density-density correlation function and structure factor. | * Example: Pair distribution function, density-density correlation function and structure factor. | ||
* Example: Magnons in ferromagnets and antiferromagnets. | * Example: Magnons in ferromagnets and antiferromagnets. | ||
| Line 19: | Line 29: | ||
*J. M. Zhang and R. X. Dong, ''Exact diagonalization: The Bose–Hubbard model as an example'', Eur. J. Phys. '''31''', 591 (2010). [https://iopscience.iop.org/article/10.1088/0143-0807/31/3/016 [PDF]] | *J. M. Zhang and R. X. Dong, ''Exact diagonalization: The Bose–Hubbard model as an example'', Eur. J. Phys. '''31''', 591 (2010). [https://iopscience.iop.org/article/10.1088/0143-0807/31/3/016 [PDF]] | ||
== LECTURE | == LECTURE 4: Second quantization formalism for fermions == | ||
* Example: Hubbard dimer and trimer. | * Example: Hubbard dimer and trimer. | ||
* Example: Mean-field magnetic phase diagram of Hubbard model. | * Example: Mean-field magnetic phase diagram of Hubbard model. | ||
| Line 32: | Line 42: | ||
* E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, ''Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons'', Phys. Rev. B '''100''', 100503(R) (2019). [https://doi.org/10.1103/PhysRevB.100.100503 [PDF]] | * E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, ''Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons'', Phys. Rev. B '''100''', 100503(R) (2019). [https://doi.org/10.1103/PhysRevB.100.100503 [PDF]] | ||
== LECTURE | == LECTURE 5: Time-dependent perturbation theory: Dyson vs. Magnus series == | ||
* Example: Dyson vs. Magnus expansion for driven harmonic oscillator. | * Example: Dyson vs. Magnus expansion for driven harmonic oscillator. | ||
| Line 39: | Line 49: | ||
* S. Blanes, F. Casas, J. A. Oteo, and J. Ros, ''A pedagogical approach to the Magnus expansion'', Eur. J. Phys. '''31''', 907 (2010). [http://personales.upv.es/serblaza/2010EJP.pdf [PDF]] | * S. Blanes, F. Casas, J. A. Oteo, and J. Ros, ''A pedagogical approach to the Magnus expansion'', Eur. J. Phys. '''31''', 907 (2010). [http://personales.upv.es/serblaza/2010EJP.pdf [PDF]] | ||
== LECTURE | == LECTURE 6: Floquet theory of periodically driven quantum systems == | ||
*Example: AC Stark effect for two-level atom in classical electromagnetic wave. | *Example: AC Stark effect for two-level atom in classical electromagnetic wave. | ||
*Example: Floquet topological insulators. | *Example: Floquet topological insulators. | ||
| Line 45: | Line 55: | ||
===References=== | ===References=== | ||
* A. Eckardt and E. Anisimovas, ''High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective'', New J. Phys. '''17''', 093039 (2015). [https://iopscience.iop.org/article/10.1088/1367-2630/17/9/093039/pdf [PDF]]. | * A. Eckardt and E. Anisimovas, ''High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective'', New J. Phys. '''17''', 093039 (2015). [https://iopscience.iop.org/article/10.1088/1367-2630/17/9/093039/pdf [PDF]]. | ||
== LECTURE 7: Dissipative quantum mechanics with application to qubits == | == LECTURE 7: Dissipative quantum mechanics with application to qubits == | ||
Revision as of 08:54, 10 August 2021
LECTURE 1: Second quantization formalism for harmonic oscillator
- Example: Coherent (quasiclassical) and squeezed states.
- Example: Isotropic three-dimensional harmonic oscillator.
- Example: Phonons in solids.
References
- Chapter 1.9 and 7.1 of Nazarov & Danon textbook.
LECTURE 2: Quantization of the electromagnetic field
- Example: AC Stark effect for two-level atom in quantized electromagnetic field vs. Floquet theory.
- Example: Nonclassical light and photon statistics.
- Example: Light-matter interaction.
References
- Quantization of the free electromagnetic field: Photons and operators
- M. Haas, U. D. Jentschura, and C. H. Keitel, Comparison of classical and second quantized description of the dynamic Stark shift, Am. J. Phys. 74, 77 (2006). [PDF]
LECTURE 3: Second quantization formalism for bosons
- Example: Pair distribution function, density-density correlation function and structure factor.
- Example: Magnons in ferromagnets and antiferromagnets.
- Example: Bogoliubov theory of superfluidity.
- Example: Bose-Hubbard model for cold atoms in optical lattices.
References
- Chapters 3, 4.5 and 6 of Nazarov & Danon textbook.
- W. E. Lawrence, Algebraic identities relating first- and second-quantized operators, Am. J. Phys. 68, 167 (2000). [PDF]
- C. Timm, Lecture Notes on Theory of Magnetism
- J. M. Zhang and R. X. Dong, Exact diagonalization: The Bose–Hubbard model as an example, Eur. J. Phys. 31, 591 (2010). [PDF]
LECTURE 4: Second quantization formalism for fermions
- Example: Hubbard dimer and trimer.
- Example: Mean-field magnetic phase diagram of Hubbard model.
- Example: Mean-field vs. exact Richardson solution of BCS model of superconductivity.
- Example: Hartree-Fock theory of electrons in metals.
References
- Chapters 3 and 5 of Nazarov & Danon textbook.
- C. Timm, Lecture Notes on Theory of Superconductivity
- D. J. Carrascal, J. Ferrer, J. C. Smith, and K. Burke, The Hubbard dimer: A density functional case study of a many-body problem, J. Phys.: Condens. Matter 29, 019501 (2017). [PDF]
- Y. Claveau, B. Arnaud and S. Di Matteo, Mean-field solution of the Hubbard model: the magnetic phase diagram, Eur. J. Phys. 35, 035023 (2014). [PDF]
- E. Erlandsen, A. Kamra, A. Brataas, and A. Sudbø, Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons, Phys. Rev. B 100, 100503(R) (2019). [PDF]
LECTURE 5: Time-dependent perturbation theory: Dyson vs. Magnus series
- Example: Dyson vs. Magnus expansion for driven harmonic oscillator.
References
- Chapter 1 of Nazarov and Danon textbook.
- S. Blanes, F. Casas, J. A. Oteo, and J. Ros, A pedagogical approach to the Magnus expansion, Eur. J. Phys. 31, 907 (2010). [PDF]
LECTURE 6: Floquet theory of periodically driven quantum systems
- Example: AC Stark effect for two-level atom in classical electromagnetic wave.
- Example: Floquet topological insulators.
References
- A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New J. Phys. 17, 093039 (2015). [PDF].
LECTURE 7: Dissipative quantum mechanics with application to qubits
- Example: Damped harmonic oscillator.
- Example: Qubit coupled to dissipative environment (spin-boson model).
- Example: Linblad master equation and quantum jump solution.
References
- Chapters 11 and 12 of Nazarov & Danon textbook.
LECTURE 8: Relativistic quantum mechanics
References
- Chapter 13 of Nazarov & Danon textbook.