
Application of NEGF and NEGF+DFT 
to Magnetic Tunnel Junctions

Branislav K. Nikolić
Department of Physics & Astronomy, University of Delaware, Newark, DE 19716, U.S.A.

PHYS824: Nanophysics & Nanotechnology NEGF and NEGF+DFT for MTJs

https://wiki.physics.udel.edu/phys824



NEGF and NEGF+DFT for MTJsPHYS824: Nanophysics & Nanotechnology

Magnetic Tunnel Junctions (MTJs): 
Fundamentals and Applications
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Fe/MgO/Fe MTJs as the Workhorse 
of Basic Research and Commercial Spintronics
NEGF+DFT predicts TMR ~ 1000% at small bias voltage
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Switching by Magnetic Field 
vs. Current-Induced STT vs. VCMA

STT=Spin-Transfer Torque

VCMA=Voltage-Controlled Magnetic Anisotropy
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In-Plane vs. Perpendicular MTJs
Properties differ widely between the so-called “in-plane” and “perpendicular” MTJs → besides TMR ratio,
most fundamental parameters for MTJs are thermal stability factor Δ=Eb/kBT (Eb is the energy barrier
between the parallel and antiparallel states) and switching current Ic in spin-transfer torque, which
characterize the performance in storing and writing information, respectively.
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Crash Course on NEGF for 
Steady-State Quantum Transport

NEGFs for steady-state transport:

NEGF-based current expression for two-terminal nanostructures:

density of available quantum states: how are those states occupied:

Meir-Wingreen formula
Landauer-Büttiker formula for 
the limit of quantum-coherent 

transport where inelastic 
(e-e, e-ph, e-m) 

processes are absent

NEGF (quantum) vs. Boltzmann (semiclassical) nonequilibrium statistical mechanics:

Basic NEGF quantities:
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TMR of 1D Tight-Binding Model of FM/I/FM 
MTJ: Exact Analytical Solution via NEGF 
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Crash Course on NEGF+DFT for 
Steady-State First-Principles Quantum Transport

Ni: double-zeta polarized, C: single-zeta polarized

DFT

NEGF

Primary physical reason for NEGF+DFT self-consistent loop, which 
computes charge redistribution due to current flow at finite bias 
voltage, is to ensure gauge invariance of I-V characteristics

QuantumATK
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Challenges for NEGF+DFT in Application 
to Modeling of Realistic Nanodevices

Many-body effects

Large systems 
(in excess of 10,000 atoms)

The electrostatic 
potential may be 
determined by a 

dynamical environment 
(for instance a solvent)
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Ni/Vertical-Grn/Ni as MTJ 
with Perfect Spin Filtering
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Important of Small Mismatch Between 
Lattices of Electrode and Barrier Materials

Q: Why Ni as electrode?
 Only 1.3% in-plane lattice mismatch
 Majority spin states of Ni are absent around the K-point

where graphene states reside
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Magnetoresistance of Ni/Grn/Ni 
at Zero or at Finite Bias Voltage

TMRpesimistic ~ 100%  @  Vbias = 0
and for sufficiently thick (n=5) 

vertical graphene barrier

MR ~ 100%  @  Vbias ≤ 0.4 V
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Bias-Voltage-Dependent Transmission Function and 
Negative Differential Resistance (NDR) in Ni/Grn/Ni
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NDR means 
that current 

decreases with 
increasing Vb

Can one apply ~1 V 
bias voltage across Grn?
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Voltage-Dependent Local Density of States 
as a Tool to Understand Origin of NDR
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Progress in Experimental Realization of 
Ferromagnet/Grn/Ferromagnet Junctions
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Materials Science & Engineering 
of Graphene on Ni(111)
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graphene grows on Ni but not the other way around
at temperatures between 480 C and 650 C,
graphene grows on a pure Ni(111) surface in the
absence of a carbide
below 480 C, graphene growth competes with the
formation of a surface Ni2C carbide
destabilization of the surface carbide by the
addition of Cu to the surface layer facilitates the
nucleation and growth of graphene at temperatures
below 480 C
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Challenges for DFT calculations: Standard 
LDA and GGA XC functionals do not work
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Many-Body Inelastic Effects in Quantum Transport in 
MTJs: Electron-Magnon and Electron-Phonon Scattering 

Experiment: Theory & Computation:
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