Chapter 8

Green’s functions

8.1 “Classical” Green’s functions

The Green’s function method is a very useful method in the theory of ordinary and partial
differential equations. It has a long history with numerous applications.

To illustrate the idea of the method let us consider the familiar problem of finding the
electrical potential ¢ given a fixed charge distribution, p, i.e. we want to solve Poisson’s
equation

1
V2¢(r) = ——pe(r). (8.1)
€0
It turns out to be a good idea instead to look for the solution G of a related but simpler
differential equation

ViG(r) = 4(r), (8-2)

where 6(r) is the Dirac delta function. G(r) is called the Green’s function for the Laplace
operator, V2. This is a good idea because once we have found G(r), the electrical potential
follows as 1
o(r) = o dr' G(r — ') pe(r). (8.3)
That this is a solution to Eq. (8.1) is easily verified by letting V2 act directly on the
integrand and then use Eq. (8.2).
The easiest way to find G(r) is by Fourier transformation, which immediately gives

1

KGR =1 = Gk)=-1,

(8.4)

and hence )
dk dk kT 1

Glr) = / Gl = - / B = i (8.5)

When inserting this into (8.3) we obtain the well-known potential created by a charge

distribution ) )
_ 1 Pe\l
é(r) = Ireq /dr it (8.6)
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8.2 Green’s function for the one-particle Schrodinger equa-
tion

Green’s functions are particular useful for problems where one looks for perturbation
theory solutions. Consider for example the Schrodinger equation

[Ho(r) +V(r)|¥g = EVYg, (8.7)

where we know the eigenstates of Hp, and where we want to treat V' as a perturbation.
Here we consider the case of an open system, i.e. there is a continuum of states and hence
we are free to choose any E. This situation is relevant for scattering problems where a
flux of incoming particles (described by Hj) interacts with a system (described by V).
The interaction induces transitions from the incoming state to different outgoing states.
The procedure outlined below is then a systematic way of calculating the effect of the
interaction between the “beam” and the “target” on the outgoing states.

In order to solve the Schrodinger equation, we define the corresponding Green’s func-
tion by the differential equation

[E — Hy(r)] Go(r,r', E) = §(r — 1'), (8.8)

with the boundary condition, Gy(r,r’) = Go(r',r). It is natural to identify the operator
[E — Hy(r)] as the inverse of Go(r,r') and therefore we write!

Gyl(r,E) = E - Hy(r) or Gy'(r,E)Gy(r,x',E) =é(r —1'). (8.9)
Now the Schrodinger equation can be rewritten as
Gyl (x, E) = V(r)] ¥ =0, (8.10)

and by inspection we see that the solution may be written as an integral equation
Up(r) =0d(r) + /dr' Go(r, v, E)V (') ¥ (¢, (8.11)

where U9, is the eigenstate to Hy. This is verified by inserting 45 from Eq. (8.11) into
the Gy !9 term of Eq. (8.10) and then using Eq. (8.9). One can now solve the integral
equation Eq. (8.11) by iteration, and up to first order in V' the solution is

Tp(r) = 0% (r) + /dr' Go(r,r, E)V(r)T%(r') + O (V?), (8.12)
where U, is an eigenstate to Hy with eigenenergy E. What we have generated by the

iteration procedure is nothing but the ordinary (non-degenerate) perturbation theory. The
next leading terms are also easily found by continuing the iteration procedure. The Green’s

In order to emphasize the matrix structure we could have written this as [ dr”’Gy "' (r,r”’) Gy (r”,1') =
§(r —r'), where the inverse Green’s function is a function of two arguments. But in the r-representation
it is in fact diagonal Gy ' (r,v') = (E — Ho(r))d(r —r').
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function method is thus useful for this kind of iterative calculations and one can regard
the Green’s function of the unperturbed system, Gy, as simple building blocks from which
the solutions of more complicated problems can be build.

Before we introduce the many-body Green’s function in the next section, we continue
to study the case of non-interacting particles some more and include time dependence.
Again we consider the case where the Hamiltonian has a free particle part Hy of some
perturbation V., H = Hy + V. The time dependent Schrodinger equation is

[i9, — Ho(r) — V(r)] ¥(r,t) = 0. (8.13)

Similar to Eq. (8.8) we define the Green’s functions by

[i0; — Hy(r)] Go(rt,x't") = 6(r — 2')o(¢t — t). (8.14a)
[i0; — Ho(r) — V(r)] G(rt,x't') = 6(r —2')o(t — t). (8.14b)
The inverse of the Green’s functions are thus
Gy'l(r,t) = i0; — Hy(r) (8.15a)
G Y(r,t) = i0; — Ho(r) — V(r). (8.15b)

From these building blocks we easily build the solution of the time dependent Schrodinger
equation. First we observe that the following expression is a solution to Eq. (8.13)

W(r,t) = W(r, 1) + / dr’ / dt' Golrt, etV (&) T (', 1), (8.16)
or in terms of the full Green’s function
Wir 1) = WO(r, 1) + / dr’ / dt' Glr,v'st, )V ()T, ), (8.17)

which both can be shown by inspection, see Exercise 8.1. As for the static case in Eq. (8.11)
we can iterate the solution and get

=004 G()V\I»‘O + G()VG()V\I»‘O + G()VG()VG()V‘I'O + .-
=00+ (Go+ GoVGo + GoVGoVGy + -+ ) VI, (8.18)

where the integration variables have been suppressed. By comparison with Eq. (8.17), we
see that the full Green’s function G is given by

G=Gy+ GoVGy+ GoVGyVGy +---
=Gy + G()V(G() + GoVGy+--- ) (8.19)

Noting that the last parenthesis is nothing but G itself we have derived the so-called Dyson
equation

G =Go+ GoVGa. (8.20)
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This equation will play and important role when we introduce the Feynman diagrams
later in the course. The Dyson equation can also be derived directly from Eqgs. (8.14) by
multiplying Eq. (8.14b) with G from the left.

The Green’s function G(rt,r't") we have defined here is the non-interacting version
of the retarded single particle Green’s function that will be introduced in the following
section. It is also often called a propagator because it propagates the wavefunction, i.e. if
the wavefunction is know at some time, ¢ then the wavefunction at a later time, ¢ is given

by
T(r, 1) = / dr' G(xt, f )T (x', 1), (8.21)

which can be checked by inserting Eq. (8.21) into the Schrodinger equation and using the
definition Eq. (8.14b).2
That the Green’s function is nothing but a propagator is immediately clear when we

write is it as .
G(rt,r't") = —if(t — ') (r|e HE) |y, (8.22)

which indeed is a solution of the partial differential equation defining the Green’s function,
Eq. (8.14b), the proof being left as an exercise; see Exercise 8.2. Looking at Eq. (8.22)
the Green’s function expresses the amplitude for the particle to be in state |r) at time ¢,
given that it was in the state |r') at time ¢'. We could of course calculate the propagator
in a different basis, e.g. suppose it was in a state |¢,/) and time ¢’ then the propagator for
ending in state |¢y,) is

G(nt,n't') = —if(t — t') ($nle HE )| g0). (8.23)
The Green’s function are related by a simple change of basis

G(rt,r't') = (r|¢n)G(nt,n't') (pmwr'). (8.24)

nn'

If we choose the basis state |¢,) as the eigenstates of the Hamiltonian, then the Green’s
function becomes

G(rt,x't') = —if(t — ') > " (r|¢pn)(pn[r')e En~1), (8.25)

n

Propagation from one point to another in quantum mechanics is generally expressed
in terms of transmission amplitudes. As a simple example we end this section by a typical
scattering problem in one dimension. Consider an electron incident on a barrier, located
between z > 0 and z < L, the incoming wave is for z < 0 given by exp(ikz) while the
outgoing wave on the other side z > L is given ¢ exp(ikz). Here ¢ is the transmission
amplitude. The eigenstates are for this example thus given by

— exp(ikz), for z <0,
vik) = { t exp(ikz), for =z > L. (8.26)

2 Another way to write Eq. (8.21)) is: fdr'(r|e_iH(t_tl)|r')(r'|\Il(t')) = (r|¥(¢)).
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When this is inserted into Eq. (8.25) we see that the Green’s function for the z > L and
z' < 0 precisely describes propagator across the scattering region becomes

G(zt,2't) =t Go(z,2';t,¥'), z>L and z' <O. (8.27)

where G is the Green’s function in the absence of the scattering potential. From this
example it is evident that the Green’s function contains information about the transmission
amplitudes for the particle. See also Exercise 12.2.

8.3 Single-particle Green’s functions of many-body systems

In many-particle physics we adopt the Green’s function philosophy and define some simple
building blocks, also called Green’s functions, from which we obtain solutions to our
problems. The Green’s functions contain only part of the full information carried by the
wave functions of the systems but they include the relevant information for the given
problem. When we define the many-body Green’s functions it is not immediately clear
that they are solutions to differential equations as for the Schrodinger equation Green’s
functions defined above. But as you will see later they are in fact solutions of equations
of motions with similar structure justifying calling them Green’s functions. Let us simply
carry on and define the different types of Green’s functions that we will be working with.

There are various types of single-particle Green’s functions. The retarded Green’s
function is defined as®

GR(rot, r'o't') = —if(t — )([T, (rt), U!, (c't)]p.p), { g };‘;ﬁfms } (8.28)
where the (anti-) commutator [--- ,---]g r is defined as
[A,B], = [A,B]=AB - BA, (8.29)
[A,B], = {A,B}=AB+ BA.
Similarly, we define a advanced Green’s function as
GA(rat,v'o't') = if(t — t)([¥, (ct), U!, ('t')] g, r), (8.30)

Notice the similarity between the many-body Green’s function Eq. (8.28) and the one
for the propagator for the one particle wavefunction, in Eq. (8.22). For non-interacting
particles they are indeed identical.

The second type of single-particle Green’s functions is the so-called greater and lesser
Green’s functions

G” (rot,r'o't') = —i(T, (xt) !, (r't")), (8.31a)
G<(rat,r'o't") = —i (£1) (U], (t't") T, (rt)). (8.31b)

3remember the definition of the thermal average defined in Eq. (1.119).
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We see that the retarded and advanced Green’s function can be written in terms of these
two functions as

GE(rot,r'o't") = 0(t — ') [G™ (vat,r'a't') — G=<(rat,r'a't)], (8.32a)
G (rat,r'o't) = 0(t' — t) [G<(rot,x'o’t') — G (rat,r'a't)]. (8.32b)

Even though we call these Green’s functions for “single-particle Green’s functions”,
they are truly many-body objects because they describe the propagation of single particles
governed by the full many-body Hamiltonian. Therefore the single-particle functions can
include all sorts of correlation effects.

The Green’s functions in Egs. (8.28), (8.31a), and (8.31b) are often referred to as
propagators. The reason is that they give the amplitude of a particle inserted in point r’
at time t' to propagate to position r at time ¢. In this sense G® has its name “retarded”
because it is required that ¢ > #'.

The relation between the real space retarded Green’s function and the corresponding
one in a general |v)-basis as defined in Eq. (1.71) is

GF(ort,or't') = 4, (or)GR(vat, Vo't (o'Y), (8.33)
where
GR(vot,/'o't') = —if (t — t') ([avs (t),a], , (1) 5,F), (8.34)

and similarly for G~ and G*<.

8.3.1 Green’s function of translation-invariant systems

For a system with translation-invariance the usual k-representation is a natural basis set.
Since the system is translation-invariant G(r,r’) can only depend on the difference r — r’
and in this case

1 . L
GR(r - r', ot, O'It’) — i Z GZk'rGR(kO't, k'U't’)e_’k . ’
kk’
1 o N
= 5 e GR o, Ko') T (3.35)
kk’

However, because the right hand side cannot explicitly dependent on the origin and on r’,
it follows that G'(k,k') = 0y ' G(k), allowing us to write

1 ; '
G (r—r',ot,0't') = =Y " e*UTIGR(K, ot,0't), (8.36a)
v k

GE(k,at,0't") = —i0 (t — ') ([axo (t), 0l . ()] B, F)- (8.36b)

The other types of Green’s functions have similar forms.





