Density of States in 2D

We derive the exact expression for the density of states in 2D for electrons described by the tight binding Hamiltonian $\epsilon_{k}=-2 t\left(\cos k_{x}+\cos k_{y}\right)$. The Green's function is[87]

$$
\begin{equation*}
G(z)=\sum_{\mathbf{k}} \frac{|\mathbf{k}\rangle\langle\mathbf{k}|}{z-\epsilon_{k}} \tag{C.1}
\end{equation*}
$$

in which

$$
\begin{align*}
|\mathbf{k}\rangle & =\frac{1}{\sqrt{N}} \sum_{i} e^{i \mathbf{k} \cdot \mathbf{x}_{i}}|i\rangle \\
\langle i \mid \mathbf{k}\rangle & =e^{i \mathbf{k} \cdot \mathbf{x}_{i}} \tag{C.2}
\end{align*}
$$

therefore

$$
\begin{equation*}
G_{i i}(z)=\sum_{k} \frac{1}{z-\epsilon_{k}}=\int_{1 B Z} \frac{d \mathbf{k}}{z-\epsilon_{k}} \tag{C.3}
\end{equation*}
$$

where the integration in (C.3) is over the first Brillioun zone. Now

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{1}{z-\epsilon_{k}}=P\left(\frac{1}{E-\epsilon_{k}}\right)-i \pi \delta\left(E-\epsilon_{k}\right) \tag{C.4}
\end{equation*}
$$

where

$$
z=\lim _{\varepsilon \rightarrow 0} E+i \varepsilon
$$

and

$$
\begin{equation*}
\int_{1 B Z} \delta\left(E-\epsilon_{k}\right) d \mathbf{k}=\int_{1 B Z} d \epsilon g(\epsilon) \delta\left(E-\epsilon_{k}\right)=g(E) \tag{C.5}
\end{equation*}
$$

hence

$$
\begin{equation*}
G_{i i}(z)=\int P\left(\frac{1}{E-\epsilon_{k}}\right)-i \pi g(E) \tag{C.6}
\end{equation*}
$$

and the density of states can be written in terms of the imaginary part of the Green's function as

$$
\begin{equation*}
g(E)=-\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \operatorname{Im} G_{i i}(z) \tag{C.7}
\end{equation*}
$$

Now we perform the integration in (C.3)

$$
\begin{equation*}
G_{i i}(z)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} d k_{x} \int_{-\pi}^{\pi} d k_{y} \frac{1}{z+2 t\left(\cos k_{x}+\cos k_{y}\right)} \tag{C.8}
\end{equation*}
$$

we know that

$$
\begin{equation*}
\cos k_{x}+\cos k_{y}=2 \cos \left(\frac{k_{x}+k_{y}}{2}\right) \cos \left(\frac{k_{x}-k_{y}}{2}\right) \tag{C.9}
\end{equation*}
$$

by defining new variables $\alpha=\left(k_{x}+k_{y}\right) / 2$ and $\beta=\left(k_{x}-k_{y}\right) / 2$ and Eq. C. 8 we have[89]

$$
\begin{equation*}
G_{i i}(z)=\frac{2}{(2 \pi)^{2}} \int_{-\pi}^{\pi} d \alpha \int_{0}^{\pi} d \beta \frac{1}{z+4 t(\cos \alpha \cos \beta)} \tag{C.10}
\end{equation*}
$$

also we know that (from Eq. 2.553 in Ref. [90])

$$
\begin{array}{cc}
\int \frac{d x}{a+b \cos x}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}} \tan ^{-1}\left(\frac{\sqrt{a^{2}-b^{2}} \tan (x / 2)}{a+b}\right) & a^{2}>b^{2} \\
\int \frac{d x}{a+b \cos x}=\frac{1}{\sqrt{b^{2}-a^{2}}} \ln \left[\frac{\sqrt{b^{2}-a^{2}} \tan (x / 2)+(a+b)}{\sqrt{b^{2}-a^{2}} \tan (x / 2)-(a+b)}\right] & a^{2}<b^{2} \tag{C.12}
\end{array}
$$

so that for $a^{2}>b^{2}$ (see :

$$
\begin{align*}
G_{i i}(z) & =\frac{2 \pi}{(2 \pi)^{2}} \int_{-\pi}^{\pi} d \alpha \frac{1}{\sqrt{z^{2}-16 t^{2} \cos ^{2} \alpha}} \\
& =\frac{1}{\pi z} \int_{0}^{\pi} \frac{d \alpha}{\sqrt{1-(4 t / z)^{2} \cos ^{2} \alpha}} \\
& =\frac{2}{\pi z} K(4 t / z) \tag{C.13}
\end{align*}
$$

where K is the elliptic integral of the first kind. For $a^{2}<b^{2}$:

$$
\begin{equation*}
\int_{0}^{\pi} \frac{d x}{a+b \cos x}=\frac{1}{\sqrt{b^{2}-a^{2}}}[\ln (1)-\ln (-1)]=\frac{-i \pi}{\sqrt{b^{2}-a^{2}}} \tag{C.14}
\end{equation*}
$$

therefore

$$
\begin{align*}
G_{i i}(z) & =\frac{-i}{\pi} \int_{0}^{\pi} \frac{d \alpha}{\sqrt{(4 t \cos \alpha)^{2}-z^{2}}} \\
& =\frac{-i}{\pi 4 t \sqrt{1-(z / 4 t)^{2}}} K\left(\frac{1}{\sqrt{1-(z / 4 t)^{2}}}\right) \tag{C.15}
\end{align*}
$$

We use the relation[90]:

$$
\begin{equation*}
\frac{1}{q} K\left(\frac{1}{q}\right)=K(q)+i K\left(\sqrt{1-q^{2}}\right) \tag{C.16}
\end{equation*}
$$

in which q is a complex number, therefore when $|z|<4 t$:

$$
\begin{equation*}
G_{i i}(E)=-\frac{i}{4 t \pi} K\left(\sqrt{1-(E / 4 t)^{2}}\right)+\frac{1}{4 t \pi} K(E / 4 t) \tag{C.17}
\end{equation*}
$$

by using Eq. C. 7 the density of states can be written as:

$$
\begin{equation*}
g(E)=\frac{\theta(E-4 t)}{4 \pi^{2} t} K\left(\sqrt{1-(E / 4 t)^{2}}\right) \tag{C.18}
\end{equation*}
$$

