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Density of States in 2D

We derive the exact expression for the density of states in 2D for electrons described

by the tight binding Hamiltonian ¢, = —2t(cos k, +cos k;). The Green’s function is[87]
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where the integration in (C.3) is over the first Brillioun zone. Now
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and the density of states can be written in terms of the imaginary part of the Green’s

function as

g(E) = ! lim ImG;(2) (C.7)
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Now we perform the integration in (C.3)
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we know that
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by defining new variables a = (k, +ky,)/2 and 3 = (k, —k,)/2 and Eq. C.8 we have[89]
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also we know that (from Eq. 2.553 in Ref. [90])
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so that for a? > b* (see :
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where K is the elliptic integral of the first kind. For a? < b%:
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We use the relation[90]:
1 1 . P
in which ¢ is a complex number, therefore when |z| < 4t:
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by using Eq. C.7 the density of states can be written as:
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