
Electrons in graphene – massless Dirac electrons and Berry phase 
 

Graphene is a single (infinite, 2d) sheet of carbon atoms in the graphitic 
honeycomb lattice.  On the left is a fragment of the lattice showing a primitive unit cell,  

  

with primitive translation vectors a and b, and corresponding primitive vectors G1, G2 of 
the reciprocal lattice.    On the right is the central part of the reciprocal lattice and the first 
Brillouin zone.  The corners of the Brillouin zone are the points Ki given by 
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 Because the lattice is 2-dimensional, all translations commute with reflection in 
the plane of the lattice, so all electron (or vibrational) eigenstates can be chosen to be 
either even or odd under this reflection.  For this reason, the single-particle electron states 
are rigorously separated into two classes, called “σ” and “π,” the even σ states being 
derived from carbon s and px, py orbitals, and the odd π states being derived from carbon 
pz orbitals.  These latter are cylindrically symmetric in the x-y plane, lie near the Fermi 
level (half-filled) and are the electrically active states of interest in low energy physics. 
 A useful picture of electron behavior can be derived by using Hückel theory to 
look at the π electrons (pz orbital-derived states.)  The two sublattices are shown below in 
different colors, with the “A” sublattice at vectors bnanR

rrr
21 += , and the “B” sublattice  

at vectors τr
r
+R , with 3/)( ba

rrr +−=τ .  The Hamiltonian in nearest neighbor Hückel 
theory is  

{ }∑ ++++++++−=
R

chbRRaRRRRtH
r

rrrrrrrrrrr
..τττ  

where R
r

is a pz (π) state on an A sublattice atom at site R
r

, τr
r
+R is a similar state on a 

B sublattice atom, and t is the “hopping integral” (positive) from a state to an adjacent 
similar state.  The graphite lattice is “bipartite.”  The hopping matrix element couples 
states on the A sublattice only to states on the B sublattice, and vice versa.  We now 
transform to the basis of Bloch waves, 
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This transformation block-diagonalizes the 1-electron Hamiltonian into 2 x 2 sub-blocks, 
with diagonal elements AkHAk

rr
and BkHBk

rr
both zero, and off-diagonal elements 
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The single particle Bloch energies are thus )()( kek
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±=ε , where 
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Let us write )()()( kiekeke
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φ= .  The Schrödinger equation is then kk kkH ψεψ )()(
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with the Hamiltonian matrix being 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−

+

0)(

)(0
)(ˆ

)(

)(

ki

ki

eke

eke
kH r

r

r

r
r

φ

φ

 

Then the eigenvectors ψk are 
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Note that the phase factors bkiaki ee
rrrr ⋅⋅ ++1 become the 1/3rd roots of unity, 

, when k01 3/23/2 =++ −+ ππ ii ee
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lies on a corner point of the Brillouin zone, K1, K2.  
Therefore, the energy 0)( →ke

r
 at the zone corners.  Everywhere else in k-space, 
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and the splitting of the two graphene π-bands is )(2 ke
r

, the two bands (called π 

and π*) lying symmetrically above and below the Fermi energy, E=0.  The bands are 
plotted below to the left.  A more elegant two-dimensional presentation, from Saito and 
Kataura (Dresselhaus, Dresselhaus, and Avouris, eds., Carbon Nanotubes, Springer, 
2001) is shown below to the right.  A perfect graphene sheet has one electron per carbon 



in the π-levels. Therefore, the Fermi level is between the two symmetrical bands, with 
zero excitation energy needed to excite an electron from just below the Fermi energy to 
just above at the k-point.   The (ππ*) degeneracy at isolated points K at the Fermi energy 
is general to the one electron description of graphene.  It follows from symmetry, and is 
not just an accidental result of the model.  For example, the figure below from Saito and 
Kataura shows that even though a more accurate theory does not have exact particle-hole 
symmetry, the degeneracy at the K points persists. 

  
 
 The wavefunctions of graphene have attracted a lot of interest.  Let us consider a 
circular path in k-space around the point K1 or equivalently, K2.  The energy is a linear 
function of 1Kkk

rrr
−=δ .  If you move adiabatically in k-space around the K point, the 

wavefunctions acquire a “Berry phase” eiπ=-1 when completing a circuit.  This can be 
seen by expanding the wavefunctions to first order in k

r
δ .   
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where θ  is the angle from the x-axis in the kx,ky plane.  Here the formulas xaba ˆ3=+

rr   
and yaba ˆ−=−

rr  were used.  Thus )(ke
r

equals atk
r

δ3 , and )(ke
r

has phase φ=-θ-π/2.  

Since the wavefunctions have phases ±φ/2, they change phase by π  when θ  increases by 
2π, that is, when the k

r
-vector goes once around a loop surrounding a K point.  The code 

words “massless Dirac spectrum” are used to refer to the linear ε versus k relation, and 
the special points Ki are called the “Dirac points,” shown below on the left.  If a perfect 
graphene sheet is given an extra electron or hole, it will lie near a K point, and under a dc 
magnetic field zB) , will form a cyclotron orbit, orbiting around K.  The Berry phase of π 
has the consequence that the quantized cyclotron orbits (Landau levels) will require half-
integral numbers of wavelengths to give single-valued wavefunctions, to the energy will 
be quantized as ( ) cn ωh2/1+ where n is an integer. 



 

 
 In Nature vol. 438, 10 Nov. 2005, there were back-to-back papers from the 
Manchester-Chernogolovka-Nijmegen group (Geim et al.) and the Columbia group (P. 
Kim et al.) reporting the quantum Hall effect in graphene.  The samples were monolayers 
of carbon lying on a thin silicon oxide layer on top of a doped silicon substrate which 
served as a gate electrode.  The middle and right figures above are from the Geim paper 
showing how gate voltage dopes graphene p-type (as shown by the positive Hall 
coefficient RH, through zero, to n-type.  Both RH  and electrical conductivity σ extrapolate 
to zero when the Fermi level passes through the Dirac points.  Interestingly, σ  is actually 
pinned at a minimum value near 4e2/h, and seems not to actually go to zero.  The 
quantum Hall effect signals are plotted below.  Both groups 

unambiguously see half-integer quantization, exactly as predicted by two theoretical 
groups shortly before the measurements.   
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