Electronsin graphene—massless Dirac electrons and Berry phase

Grapheneisasingle (infinite, 2d) sheet of carbon atoms in the graphitic
honeycomb lattice. On the left isafragment of the lattice showing a primitive unit cell,

Py G,
“ G, G,

with primitive trandation vectors a and b, and corresponding primitive vectors G, G, of
the reciprocal lattice.  On theright isthe central part of the reciprocal lattice and the first
Brillouin zone. The corners of the Brillouin zone are the points K; given by

K, = (@2 - Gl)/ 3K, = (2@2 + @l)/3, K, = (2@1 + 62)/3, etc. Only two are inequivalent.
Notice for examplethat K, = K, + G, .

Because the lattice is 2-dimensional, all translations commute with reflection in
the plane of the lattice, so all electron (or vibrational) eigenstates can be chosen to be
either even or odd under this reflection. For this reason, the single-particle electron states
are rigorously separated into two classes, called “c” and “m,” the even ¢ states being
derived from carbon s and p,, p, orbitals, and the odd = states being derived from carbon
p- orbitals. These latter are cylindrically symmetric in the x-y plane, lie near the Fermi
level (half-filled) and are the electrically active states of interest in low energy physics.

A useful picture of electron behavior can be derived by using Hiickel theory to
look at the 7 electrons (p, orbital-derived states.) The two sublattices are shown below in

different colors, with the “A” sublattice at vectors R = n,d +n,b , and the “B” sublattice
at vectors R+7 , with 7 = —(d +5)/3. The Hamiltonian in nearest neighbor Hiickel

theory is
H :—tZ#R><I§+?‘+‘R><ﬁ+a+f‘+‘ﬁ><ﬁ+5+f‘+h.c.}

where | R ‘ >|sapz (7) state on an A sublattice atom at site R ‘R+r> isasimilar stateon a

B sublattice atom, and ¢ is the “hopping integral” (positive) from a state to an adjacent
similar state. The graphite latticeis“bipartite.” The hopping matrix element couples
states on the A sublattice only to states on the B sublattice, and vice versa. We now
transform to the basis of Bloch waves,
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This transformation block-diagonalizes the 1-electron Hamiltonian into 2 x 2 sub-blocks,
with diagonal elements <1€A|H |IEA> and <l€B|H |l€B> both zero, and off-diagonal elements

<IEA|H|1€B> = %Zeii'(k'_k)<§‘H‘ R+ f> = —t(1+ et 4 "t ): e(k).
T
The single particle Bloch energies are thus e(k) = i‘e(l_{)‘ , where

k k
le(k)|/1 = \/1+ 4co ﬁ;anco{yTa} + 4cos{%aj .

Let uswrite e(k) = ‘e(l?)‘e’wg). The Schrédinger equation isthen H (k)| ) = e(k)|w, ).
with the Hamiltonian matrix being

AT 0 ‘e(l;) o9k
(k)= ‘e(lg)‘e_"‘”(’;) 0

Then the eigenvectors ;. are

1 e+i¢/2 1 e+i¢/2
)= b= )
Note that the phase factors 1+ e “ + ¢ become the 1/3" roots of unity,
+i2713 —-i2713

l+e +e =0, when & lies on acorner point of the Brillouin zone, K;, K.
Therefore, the energy e(k) — O at the zone corners. Everywhere else in k-space,

e(k) # 0 and the splitting of the two graphene t-bands s z\e(é)\ , the two bands (called n

and rt*) lying symmetrically above and below the Fermi energy, £=0. The bands are
plotted below to the left. A more elegant two-dimensional presentation, from Saito and
Kataura (Dresselhaus, Dresselhaus, and Avouris, eds., Carbon Nanotubes, Springer,
2001) is shown below to theright. A perfect graphene sheet has one electron per carbon




in the -levels. Therefore, the Fermi level is between the two symmetrical bands, with
zero excitation energy needed to excite an electron from just below the Fermi energy to
just above at the k-point. The (m*) degeneracy at isolated points K at the Fermi energy
is general to the one electron description of graphene. It follows from symmetry, and is
not just an accidental result of the model. For example, the figure below from Saito and
Kataura shows that even though a more accurate theory does not have exact particle-hole

symmetry, the degeneracy at the K points persists.
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The wavefunctions of graphene have attracted alot of interest. Let usconsider a
circular path in k-space around the point K; or equivalently, K,. The energy isalinear

function of & = k — [Zl. If you move adiabatically in k-space around the K point, the
wavefunctions acquire a“Berry phase” ¢”=-1 when completing acircuit. This can be
seen by expanding the wavefunctions to first order in 5 .
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where @ isthe angle from the x-axisin the k.. k, plane. Herethe formulas a + b = +/3ax
and G —b =—ap wereused. Thus ‘e(l@)‘ equals ﬁ‘éﬂat , and e(k) has phase ¢=-6-7/2.

Since the wavefunctions have phases +¢/2, they change phase by 7 when & increases by

27, that is, when the & -vector goes once around a loop surrounding aK point. The code
words “massless Dirac spectrum” are used to refer to the linear € versus k relation, and
the special points K; are called the “Dirac points,” shown below on the left. |f aperfect
graphene sheet is given an extra electron or hole, it will lie near a K point, and under adc
magnetic field Bz , will form a cyclotron orbit, orbiting around K. The Berry phase of =
has the consequence that the quantized cyclotron orbits (Landau levels) will require half-
integral numbers of wavelengths to give single-valued wavefunctions, to the energy will
be quantized as (1 +1/ 2)hw, where n is an integer.
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In Natureval. 438, 10 Nov. 2005, there were back-to-back papers from the
Manchester-Chernogol ovka-Nijmegen group (Geim et al.) and the Columbia group (P.
Kim et al.) reporting the quantum Hall effect in graphene. The samples were monolayers
of carbon lying on athin silicon oxide layer on top of a doped silicon substrate which
served as a gate electrode. The middle and right figures above are from the Geim paper
showing how gate voltage dopes graphene p-type (as shown by the positive Hall
coefficient Ry, through zero, to n-type. Both Ry and electrical conductivity o extrapolate
to zero when the Fermi level passes through the Dirac points. Interestingly, o isactually
pinned at a minimum value near 4€’/h, and seems not to actually go to zero. The
guantum Hall effect signals are plotted below. Both groups
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unambiguously see half-integer quantization, exactly as predicted by two theoretical
groups shortly before the measurements.
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