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Spin-Transfer Torque in Pictures 
and Basic Terminology

Terminology:
In-plane or (anti) damping torque
Parallel or field-like torque
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What Are Experimental Manifestations of STT?

Magnetization Switching: Magnetization Precession:
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Fast Quantum Electrons Interact with Slow Classical 
Magnetization Governed by LLG Equation 
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Principal Applications of STT: 
STT-MRAM and STT-Nano-oscillators 

Non-volatile Memory: Microwave Nano-Oscillators: N
ature M

ater.6, 447 (2007)
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Other Anticipated Technologies Based on STT
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Physical Explanation of the Origin of STT

Semiclassical: Fully Quantum:
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Undergrad Quantum-Mechanical Theory of STT: 
One-Dimensional Toy Model #1

JM
M

M
 320, 1190 (2008)
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Undergrad Quantum-Mechanical Theory of STT: 
One-Dimensional Toy Model #2

JMMM 320, 1190 (2008)

when summing or averaging over all 
contributions from around the 

Fermi surface, dephasing leads to 
Qrefl≈0, Qtrans≈0 (to a good 

approximation valid for typical 
metallic interfaces), so that STT 
acting on the magnet per unit area 
being equal to the full component 
of incident spin current that is 

transverse to magnetization of a 
ferromagnet
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Nonequilibrium Density Matrix 
for Steady-State Quantum Transport

Equilibrium-like density matrix for stead-state transport of interacting fermions:

Applied to non-interacting fermions in equilibrium:

Nonequilibrium density matrix in terms of NEGFs:

Ĝr
0 = [E ¡ Ĥ + i´]¡1 or Ĝr

0 = [E ¡ Ĥ ¡ §̂L ¡ §̂R]¡1

Equilibrium density matrix is universal (fixed by Boltzmann and Gibbs):
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How to Remove Equilibrium Expectation 
Values in Gauge Invariant Fashion

Density matrix often split into “equilibrium” + “nonequilibrium” contributions 
for purely computational purposes:  

The proper gauge-invariant nonequilibrium density matrix is defined by:

First two terms below remove any equilibrium contribution to physical quantity 
whose non-zero value is compatible with time-reversal invariance (zero T limit):

SPIN 3, 1330002 (2013)
PHYS824: Introduction to Nanophysics



STT via NEGF

Graduate Quantum-Mechanical Theory of STT using 
Torque Operator and NEGF Formulas

PRB 77, 184430 (2008)
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NEGF Formulas for STT in the Absence of 
Spin Flips  Using Interfacial Spin Current 

Theory: PRL 97, 237205 (2006)

Experiment: Nature Phys. 4, 37 (2008)
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Experiments on STT in Spin Valves 
Fert Lab

Low-impedance (RA) ~ 0.01 Ωμm2

GMR ~ 10-20%

T=30 K

Critical current densities quite similar in good spin valves and 
MTJs (high polarization of MTJs may give ~ 2x advantage)
Conventional ferromagnet spin transfer devices require lateral 
dimensions ≤ 250 nm to avoid significant self-field effects from 
required current levels

nanopillar geometry

|Jc| ≈ 107 A/cm2
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Experiments on STT in 
Magnetic Tunnel Junctions 

High-impedance (RA) ~ 1-100 Ωμm2

TMR ~ 100%
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New Frontier: Spin-Orbit Coupling-Driven STT 
on Single Ferromagnetic Layer

Nature 511, 449 (2014)

Nature 511, 449 (2014)
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What is Spin-Orbit Coupling?

SO deflection force:
x

y
z
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Structural Inversion Asymmetry of 
2DEGs in Semiconductor Heterostructures

Inversion symmetry ⇒ no R-SO

Broken inversion symmetry ⇒ R-SO
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Nonrelativistic expansion of 
the Dirac equation can be 

seen as a method of 
systematically including the 

effects of the negative 
energy solutions on the states 

of positive energy starting 
from their nonrelativistic limit

VACUUM SEMICONDUCTORS

electron

hole

Vacuum vs. Crystalline SO Coupling Strength
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Rashba SO Splitting of 
Energy Bands in 2DEGs

1D:

2D:

Spin configuration at 
the Ferm

i energy

J. Nitta et al., PRL 78, 1335 (1997)
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Crash Course on 3D Topological Insulators 
Helical liquid on the surface 

of strong 3D TIGraphene Spin-degenerate Spin-split 
by Rashba SOC H

asan Lab, Science 323, 919 (2009) 

Why is this interesting: Protection by 
time-reversal invariance against 

scattering off non-magnetic impurities
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Detecting Interfacial SOC via
Tunneling Anisotropic Magnetoresistance 

PRB  85, 054406 (2012) PRB  90, 115432 (2014).
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STT in Lateral TI/FM Heterostructures 

Solving LLG equation with torque field 
generated by the surface of 3D TI

unpublished
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STT in Vertical TI/FM Heterostructures
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Applications: OSTT-MRAM and 
STT-nanooscillators using TI Capped MTJs

compromise between large current 
density (requiring low junction resistance 
to avoid damage) and readability (requiring 
large magnetoresistance)

optimization of the spin polarization 
across the junction, stabilization of the 
‘fixed’ layer magnetization, and 
minimization of stray fields often result in 
complex stacking structures involving more 
than 10 different layers.

MTJs for STT-MRAM applications

Supplemental Materials to 
PRL 109, 166602 (2012)
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