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PHYS 824: Introduction to Nanophysics, https://wiki.physics.udel.edu/phys824

University of Delaware

1 Tight-binding model for two-terminal nanostructures

The so-called real-space modeling of ballistic or disordered nanostructures connected to two (or
more) electrodes typically starts from a tight-binding Hamiltonian (TBH) defined on a finite cubic
lattice1 N ×Ny ×Nz (lattice constant is denoted by a)

Ĥ =
∑
m

εm|m〉〈m|+
∑
〈m,n〉

tmn|m〉〈n|. (1)

Here tmn are nearest-neighbor hopping matrix element between s-orbitals 〈r|m〉 = ψ(r −m) on
adjacent atoms located on sites m of the lattice. The disorder is simulated by taking either the
on-site potential (diagonal elements in the Hamiltonian matrix) εm or the hopping (off-diagonal
elements) tmn, or both, to be a random variable characterized by some probability distribution.
The on-site energies εm correspond to the potential energy, while hopping matrix elements tmn are
the kinetic energy (and depend on the effective mass of an electron). The hopping defines the unit
of energy.

The TBH is a matrix (in site-representation) of dimension ∼ (L/a)d, which is sparse since
nearest-neighbor condition means that most of the elements are zero. It can be considered as
a model of either a nanoscale conductor,2 or a discretized version of a continuous one-particle
hamiltonian Ĥ = −~2∇2/2m+U(r). In a discretized interpretation the continuous position vector
r is replaced by the position of a point m on a discrete lattice, and derivatives are approximated
by finite differences.

The standard theoretical view of our two-probe measurement circuits is shown on Fig. 1. The
sample is placed between two semi-infinite ideal leads. Each lead is modeled by the same clean TBH
ĤL, with εm = 0 and tmn = tL, which is defined on an infinite Hilbert space of site states |m〉. The
coupling between the end layer sites in the lead and corresponding sites in the sample are taken into
account through TBH, ĤC, which describes only hopping tmn = tC between these sites. The leads
are connected at infinity to a particle reservoirs through smooth contacts. Left and right reservoirs
(large conductors) are at a constant chemical potential µL and µR, respectively. Thus they are
biased relative to each other by a battery of voltage V = (µL − µR)/e. Each reservoir injects the
fully thermalized carriers into the lead. The distribution function of electrons to be injected is equi-
librium Fermi-Dirac with chemical potential of the reservoir. It is assumed that reservoirs are large
enough conductors such that passage of current does not disturb these equilibrium characteristics
(i.e., chemical potential can be defined and stays the same as in the reservoir decoupled from the

1We simplify notation by using N ≡ Nx for the number of sites along the x-axis.
2Lattices treated by present day computers cannot contain more than few tens of thousands of atoms. This is the

limitation imposed by the available computer memory and computational complexity of matrix operations.
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Figure 1: A two dimensional version of our actual 3D model of a two-probe measuring geometry.
Each site hosts a single s-orbital which hops to six (or fewer for surface atoms) nearest neighbors.
The hopping matrix element is t (within the sample), tL (within the leads), and tC (coupling of
the sample to the leads). The leads are semi-infinite and connected smoothly at ±∞ to reservoirs
biased by the chemical potential difference µL − µR = eV .

conductor). The transport in the central part is phase-coherent. Thus the reservoirs account for
the dissipation necessary to establish the steady state. They accept non-equilibrium distribution
of electrons from the non-dissipative conductor and provide the thermalization. Even though re-
sistance is related to the dissipation, its value is determined solely by the momentum relaxation
processes caused by the scatterers inside the disordered region. However, only the leads at a fixed
potential are explicitly taken into account when calculating transport properties. The leads provide
the boundary condition for the relevant equations. Since electron leaving the central mesoscopic
sample looses the phase-coherence, leads, in a practical way for theoretical calculations, introduce
the heuristic construction of the perfect macroscopic reservoirs.

1.1 Green function within the central region

The direct inversion of TBH for the whole system, consisting of semi-infinite leads and the sample,

Ĝr,a(m,n) = (E − Ĥ(m,n)± iη)−1, (2)

would lead into a trouble since Ĥ(m,n) is an infinite matrix (Ĥ = ĤS + ĤL + ĤC). The site
representation of the Green operator Ĝr,a is a Green function matrix

Ĝr,a(m,n) = 〈m|Ĝr,a|n〉, (3)

and the matrix of Hamiltonian in this representation is a band diagonal matrix of the bandwidth
2NyNz + 1. The usual method in the literature to avoid this is to use the periodic boundary con-
ditions. However, this would generate a discrete energy spectrum, instead of continuous one of our
open system, and is plagued with problems when trying to use standard methods of nonequilibrium
statistical mechanics (such as the Kubo formula) which are applicable to systems with continuous
energy spectrum.

The correct handling of the leads and openness of the system was initiated by Caroli et al..3.
Instead of just truncating the matrix (2), which would lead to a conductor with reflecting bound-
aries instead of open one where electrons can enter and leave the conductor, the leads are taken

3C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C: Solid State Phys. 4, 916 (1971); see also
Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992); S. Datta, Electronic Transport in Mesoscopic Systems
(Cambridge University Press, Cambridge, 1995); and S. Datta, Quantum Transport: Atom to Transistor (Cambridge
University Press, Cambridge, 2005).
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into account through the exact “self-energy” terms describing the “interaction” of the finite-size
conductor with the leads.

If we consider just the sample and one lead4 then Green function for this system can be written
in the form of a block matrix

Ĝr =
(

ĜrL ĜrL−S
ĜrS−L ĜrS

)
=

(
E + iη − ĤL ĤC

Ĥ†C E + iη + ĤS

)−1

, (4)

where we have shorten the notation by using operator labels without respective matrix indices. The
partition above follows from the intrinsic separation of the Hilbert space of states, brought about
by the physical separation of lead and the sample in the lattice space. The diagonal blocks are:
infinite matrix ĜrL, connecting the sites in the left lead; and finite ĜrS connecting the states on the
lattice sites inside the conductor. The off-diagonal blocks, ĜrL−S and ĜrS−L, connect the states in
the lead and the sample. The matrix of the coupling Hamiltonian ĤC(mL,mS) = tC is non-zero
only for the adjacent sites in the lead mL and the sample mS . The set of matrix equations for ĜrS
follows from Ĥ · Ĝr = Î

[E + iη − ĤL] · ĜrL−S + ĤC · ĜrS = 0, (5)

Ĥ†C · Ĝ
r
L−S + [E + iη − ĤS ] · ĜrS = Î . (6)

The Equation (5) can be solved for ĜL−S

ĜrL−S = −ĝrL · ĤC · ĜrS , (7)

ĝrL = (E + iη − ĤL)−1, (8)

where we recognize ĝrL as a Green function of a bare semi-infinite lead. This is still an infinite matrix,
but can be found exactly as demonstrated in the following Section. Using ĜrL−S (7) in Eq. (6) we
get

ĜrS = (E − ĤS − Ĥ†C · ĝ
r
L · ĤC)−1. (9)

The final result is a Green function inside a finite-size disordered region which “knows” about the
semi-infinite leads, and relevant boundary conditions at infinity they provide, through the “self-
energy” function5

Σ̂r(mS ,nS) = t2Cĝ
r
L(mL,nL). (10)

Since the self-energy provides a well defined imaginary part (which then “helps” the Green function
to become retarded or advanced), we drop the small iη in Eq. (9). The self-energy Σ̂r(mS ,nS) is
non-zero only between the sites (mS ,nS) on the edge layer of the sample which are adjacent to the
sites (mL,nL) lying on the edge layer of the lead. This follows from the structure of lead-sample
coupling matrix ĤC. If the sample is attached to many leads (multi-probe geometry) then one
should add the self-energy terms generated by each lead, i.e., in our two-probe case

ĜrS = (E − ĤS − Σ̂r)−1, (11)

where Σ̂r = Σ̂r
L + Σ̂r

R. Advanced functions are obtained in a standard way: Ĝa = [Ĝr]†, and
Σ̂a = [Σ̂r]†. In the following Section we give a derivation of a Green function ĝrL(mL,nL) on the
end layer of the lead.

4To clarify notation, we use the subscript L for a general lead and subscript L for the left lead or reservoir in a
two-probe geometry.

5Analogous terms in Green functions appear when solving the Dyson equation in diagrammatic perturbation theory.
Here we use the same labeling while keeping in mind that no approximation is taken for the lead self-energy (as is
usually done when discussing self-energies in perturbation theory by summing only a specific set of diagrams).
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The self-energies “measuring” the coupling of the sample to the leads can be related to the
average time an electron spends inside the sample before escaping into the leads. This can be
understood from the following simple arguments. The open system is surrounded by an ideal
conducting medium. In that case we cannot talk about eigenstates. Nevertheless, we can formally
use an effective Hamiltonian, which is inverted to get the Green function,

[ĤS + Σ̂r]|αeff〉 = Eeff
α |αeff〉. (12)

This is not a Hermitian operator, and total probability is not conserved. If we write the formal
eigenenergy using the eigenvalue of the corresponding isolated system Eα,

Eeff
α = Eα − ζ ′α − i

ζα
2
, (13)

then its imaginary part ζα gives the “lifetime” of an electron in state α before escaping into the
leads. The probability to stay in the state |α〉 decays as | exp(−iEeff

α t/~)|2 = exp(−2ζαt/~), and the
escape time into the leads is τesc = ~/2ζα. The “loss” of electrons into the leads is also illustrated
by the following identity ∫

∇ · j(r) =
1
~

∫
dr dr′ Ψ∗(r)Γ(r, r′)Ψ(r′), (14)

where Γ̂ = −2 Im Σ̂ = i(Σ̂r − Σ̂a), and the evolution of wave functions Ψ(r) is determined by the
effective Hamiltonian ĤS + Σ̂r.

Even though the eigenstates are not defined in the standard quantum-mechanical sense, one can
still use the local density of states (LDOS) given by the imaginary part of the Green function

ρ(m, E) = − 1
π

Im ĜrS(m,m;E). (15)

It turns out that this LDOS is qualitatively similar to the LDOS of 2D and 3D closed system.
However, in quasi-1D conductors LDOS computed from (15) is quite different from LDOS

ρ(r, E) =
∑
α

|Ψα(r)|2 δ(E − Eα), (16)

defined in terms of exact eigenstates of a closed system.

1.2 The Green function for an isolated semi-infinite ideal lead

In the previous Section we learned that the Green function matrix ĜrS(m,n) (11) at a continuous
energy E can be computed numerically by inverting the finite matrix E − ĤS − Σ̂r. This requires
to know the matrix elements ĝr(mB,nB) of the Green operator for (each) isolated semi-infinite
lead between the states |mB〉 located on the sites mB at the open boundary of the lead. The lead
is modeled by TBH on a rectangular lattice Ninf × Ny × Nz, where Ninf → ∞ to make the lead
semi-infinite. The exact eigenstates of such lead (which has uniform cross section) are separable
into a tensor product |k〉 = |kx〉 ⊗ |ky, kz〉. Here |ky, kz〉 are transverse eigenstates (i.e., eigenstates
of each isolated transverse layer)

|ky, kz〉 =

√
2

Ny + 1

√
2

Nz + 1

Ny∑
ny=1

Nz∑
nz=1

sin(kynya) sin(kznza) |ny, nz〉, (17)
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where |ny, nz〉 denotes the orbitals of the arbitrary 2D layer. We choose a hard wall boundary
conditions in ŷ and ẑ direction, so the state 〈m|ky, kz〉 vanishes at the sites |m〉 belonging to the
transverse boundary surfaces. This makes the transverse states |ky, kz〉 quantized with eigenvalues
(dispersion relation)

ε(ky, kz) = 2tL[cos(kya) + cos(kza)], (18)

defined by discrete ky(i) = iπ/(Ny + 1)a, and kz(j) = jπ/(Nz + 1)a. Here i runs from 1 to Ny and
j runs from 1 to Nz. The longitudinal eigenstates |kx〉 (i.e., on the 1D chains) are

〈nx|kx〉 =
√

2
Ninf

sin(kxnxa), (19)

with eigenvalues ε(kx) = 2tL cos(kxa). This states vanish at the open end on which nx = 0.
The Green function ĝr(mB,nB) can be expanded in terms of the exact eigenstates |k〉,

〈mB|ĝr|nB〉 =
∑
k

〈mB|k〉〈k|nB〉
E − 2tL cos(kxa)− ε(ky, kz) + iη

=
∑
ky ,kz

〈my,mz|ky, kz〉〈ky, kz|ny, nz〉

× 2
Ninf

∑
kx

sin2 kxa

E − ε(ky, kz) + iη − 2tL cos(kxa)
, (20)

where only sites at the edge nx = 1 are needed (|nB〉 ≡ |nx = 1, ny, nz〉). When Ninf → ∞, kx is
continuous and the sum

∑
kx

can be replaced by the integral

J(ky, kz) =
2
Ninf

∑
kx

sin2 kxa

E − ε(ky, kz) + iη − 2tL cos(kxa)

=
a

4πtL

π/a∫
0

dkx
2− e2ikxa − e−2ikxa

(EJ + iη)/2tL − cos(kxa)
, (21)

where we shorten the notation with EJ = E − ε(ky, kz). This integral can be solved by converting
it into a complex integral over the unit circle and finding the residues at the poles lying inside the
circle

J(ky, kz) = − 1
4iπt

∮
|w|=1

1− w2

w2/2 + 1/2− Y w
. (22)

Here Y denotes the expression Y = (EJ + iη)/2tL. The poles of the integrand are at w1,2 =
Y ∓

√
Y 2 − 1 and have the following properties: (a) w1w2 = 1, for any |Y |; (b) |w1| < 1, |w2| > 1,

for |Y | > 1; and (c) |Y | ≤ 1, both poles lie on the unit circle. If (c) is satisfied, then +iη (η → 0+)
is needed to define the retarded Green function

J(ky, kz) = − 1
tL

Res
(

1− w2

(w − w1)(w − w2)

)
w=w1

=
1

2t2L

(
EJ − i

√
4t2L − E2

J

)
. (23)

If |Y | > 1, then

J(ky, kz) =
1

2t2L

(
EJ − sgnEJ

√
E2
J − 4t2L

)
, (24)

because one pole is always inside the circle, and the small imaginary term iη is not required to
define the Green function.
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We summarize the results of this section by giving the complete expression for the self-energies
introduced by each lead L (in a two-probe case left L and right R)

Σ̂r
L(m,n) =

2
Ny + 1

2
Nz + 1

∑
ky ,kz

sin(kymya) sin(kzmza)

×
t2C
2t2L

(
EJ − i

√
4t2L − E2

J

)
sin(kynya) sin(kznza), (25)

for |EJ | < 2tL, and

Σ̂r
L(m,n) =

2
Ny + 1

2
Nz + 1

∑
ky ,kz

sin(kymya) sin(kzmza)

×
t2C
2t2L

(
EJ − sgnEJ

√
E2
J − 4t2L

)
sin(kynya) sin(kznza), (26)

for |EJ | > 2tL. In these expression it is assumed that n and m are the sites on the edge layers (first
or Nth) of a conductor.

1.3 One-dimensional example: single impurity in a clean wire

To illustrate the power of concepts introduced above, we provide a “back of the envelope” calculation
for the single impurity, modeled by the on-site potential ε, in a clean infinite 1D tight-binding chain
(εm = 0 on all other site). This toy example is illustrated in Fig. 2. Our derivation assumes

semi-infinite electrode 1 semi-infinite electrode 2

t t

t t

tt

tt

0ε ≠ 0ε =

0ε =0ε ≠

Figure 2: An infinite tight-binding chain with a single impurity atom (top) is equivalent to a
“device” where the central region consisting of that atom is attached to two semi-infinite ideal
electrodes. The Green function of such central region, as well as the self-energies introduced by the
“interaction” with the leads, are 1× 1 matrices (i.e., complex numbers).

that impurity is the “sample” from Fig 1 and the rest of the chain are the “leads” with hopping
parameter t throughout the system. The Green function of the “sample” is just a number Gr(E)
(i.e., 1× 1 matrix)

Grin(E) = [E − ε− (E − i
√

4t2 − E2)]−1, (27)

for |E| < 2t. This gives the local density of states (15), which is independent of the lattice site,
inside the band

ρin(E) = − 1
π

ImGrin(E) =
1
π

√
4t2 − E2

ε2 + 4t2 − E2
. (28)
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For energies outside the band, e.g., E > 0 > 2t the Green function is

Grout(E) = [E − ε− (E −
√
E2 − 4t2) + iη]−1, (29)

where a small imaginary part is added to E because the “self-energy” generated by the “leads” is
real. The corresponding LDOS is

ρout(E) = − 1
π

ImGrout(E) =
1
π

η

(
√
E2 − 4t2 − ε)2 + η2

η→0+

→ δ(−ε+
√
E2 − 4t2), (30)

where delta function properties lead to the following simplification

δ(−ε+
√
E2 − 4t2) =

√
E2
p − 4t2

Ep
δ(E − Ep). (31)

The delta function singularity in LDOS appears outside the band of a 1D chain. This is signaling
the appearance of a bound state at the energy Ep = sgn ε

√
ε2 + 4t2. In a clean chain (ε = 0) LDOS

is singular at the band edges (Fig. 3).
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Figure 3: Local density of states (LDOS) at an arbitrary site of a 1D chain, described by a tight-
binding Hamiltonian, for: (a) energies inside the band of a clean 1D chain, (b) energies inside the
band of a 1D chain with one impurity of on-site energy ε = 1, and (c) outside the band of a 1D
chain with one impurity of on-site energy ε = 1.

Thus, the introduction of a single impurity is enough to smooth out the band edge singularities
in 1D. These proceeds in accordance with the sum rule: LDOS summed over all sites and energies
is constant, meaning that weight is transferred from the continuous spectrum at each site n into
the discrete level LDOS, proportional to the overlap of the discrete state with |n〉 (Fig. 3).
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