Nanoscale Thermoelectrics

Branislav K. Nikolić

Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

PHYS824: Nanophysics and Nanotechnology

Thermoelectric Energy Conversion: Fundamentals and Applications

Fundamentals

PHYS824: Nanophysics and Nanotechnology

NEGF modeling of nanoscale thermoelectrics

bulk

Thermoelectric Figure of Merit ZT in the Linear-Response Regime

$$ZT = \frac{S^2 GT}{\kappa_{\rm el} + \kappa_{\rm ph}}$$

□In the linear-response regime (i.e., close to equilibrium) one operates close to the small voltage V = - S Δ T which exactly cancels the current induced by the small temperature bias Δ T

 $\Box As ZT \rightarrow \infty$, the efficiency approaches the ideal Carnot value

$$\eta_c = 1 - T/(T + \Delta T)$$

$$ZT = \frac{(S_p - S_n)^2 T}{[(\kappa_n / \sigma_n)^{1/2} + (\kappa_p / \sigma_p)^{1/2}]^2}$$

Thus, in the linear-response regime $\Delta T \ll T$ typically investigated for bulk materials, the efficiency stays low $\eta_c = \Delta T / T$ even if ZT can be made very large

$$q_{\rm TE} = \frac{W}{Q_H} = \frac{T_H - T_C}{T_H} \left(\frac{(1 + ZT_M)^{1/2} - 1}{(1 + ZT_M)^{1/2} + T_C/T_H} \right)$$

<u>Ultimate pragmatic goal:</u> devices with ZT ≈ 2-3 that are stable over a broad temperature range with low parasitic losses

PHYS824: Nanophysics and Nanotechnology

Decades of Little Progress in Increasing ZT of Bulk Materials

PHYS824: Nanophysics and Nanotechnology

Graphene as a Building Block of Nanoscale and Low-Dimensional Devices

Graphene (*below*; *top*), a plane of carbon atoms that resembles chicken wire, is the basic building block of all the "graphitic" materials depicted below. Graphite (*bottom row at left*), the main component of pendi "lead," is a crumbly substance that resembles a layer cake of weakly bonded graphene sheets. When graphene is wrapped into rounded forms, fullerenes result. They include honeycombed cylinders known as carbon nanotubes (*bottom row at center*) and soccer ball—shaped molecules called buckyballs (*bottom row at right*), as well as various shapes that combine the two forms.

Large-Area Graphene is not Suitable for Thermoelectric Applications

PHYS824: Nanophysics and Nanotechnology

Zigzag and Chiral GNRs with Nanopore Arrays as Potentially High-ZT Thermoelectrics

PRB ???, (2012)

PHYS824: Nanophysics and Nanotechnology

NEGF Fundamentals

□Basic NEGF quantities:

density of available quantum states:

$$G^{r}_{\sigma\sigma'}(t,t') = -\frac{i}{\hbar}\Theta(t-t')\langle\{\hat{c}_{\mathbf{r}\sigma}(t),\hat{c}^{\dagger}_{\mathbf{r}'\sigma'}(t')\}\rangle$$

NEGFs for steady-state transport:

 $G^r(t,t') \to G^r(t-t') \xrightarrow{\mathrm{FT}} G^r(E)$

$$\mathbf{D}_{\mathrm{eq}} = -\frac{1}{\pi} \int_{-\infty}^{+\infty} dE \operatorname{Im} \mathbf{G}^{r}(E) f(E - E_{F})$$

$$G^{<}_{\sigma\sigma'}(t,t') = \frac{i}{\hbar} \langle \hat{c}^{\dagger}_{\mathbf{r}'\sigma'}(t') \hat{c}_{\mathbf{r}\sigma}(t) \rangle$$

$$G^{<}(t,t') \to G^{<}(t-t') \xrightarrow{\mathrm{FT}} G^{<}(E)$$

$$oldsymbol{D}_{
m neq} = rac{1}{2\pi i} \int\limits_{-\infty}^{+\infty} dE \, {f G}^<(E)$$

□NEGF (quantum) vs. Boltzmann (semiclassical) nonequilibrium statistical mechanics:

$$G^{r}(E) = [E - H - \Sigma^{r}_{\text{leads}} - \Sigma^{r}_{\text{int}}]^{-1}$$

$$G^{<}(E) = G^{r}(E)[\Sigma^{<}_{\text{leads}}(E) + \Sigma^{<}_{\text{int}}(E)]G^{a}(E)$$

$$\frac{\nabla f + \mathbf{F} \cdot \nabla_{\mathbf{k}} f = I_{\text{coll}}}{\mathbf{j} = 2_s e \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \mathbf{v}(\mathbf{k}) f(\mathbf{k})}$$

DNEGF-based current expression for two-terminal nanostructures:

 $I_{\alpha} = \frac{2e}{h} \int dE \operatorname{Tr} \left\{ \Sigma_{\alpha}^{<}(E) G^{>}(E) - \Sigma_{\alpha}^{>}(E) G^{<}(E) \right\} \quad \text{Meir-Wingreen formula}$

$$(V_{ds}) = \frac{2e}{h} \int_{-\infty}^{+\infty} dE \operatorname{Tr} \left\{ \Gamma_R(E, V_{ds}) \mathbf{G}_{S1}^r \Gamma_L(E, V_{ds}) \mathbf{G}_{1S}^a \right\} \left[f(E - \mu_L) - f(E - \mu_R) \right]$$

Landauer-Büttiker-type formula (phase-coherent transport where Coulomb interaction is treated at the mean-field level)

PHYS824: Nanophysics and Nanotechnology

Electronic Thermopower, Conductance and Thermal Conductance via NEGF

Delectronic transmission and its integrals:

$$\mathcal{T}_{el}(E) = \operatorname{Tr} \left\{ \mathbf{\Gamma}_{R}(E) \mathbf{G}(E) \mathbf{\Gamma}_{L}(E) \mathbf{G}^{\dagger}(E) \right\}$$

$$\mathbf{G}(E) = [E\mathbf{S} - \mathbf{H} - \mathbf{\Sigma}_{L}(E) - \mathbf{\Sigma}_{R}(E)]^{-1}$$

$$H_{ij} = \langle \phi_{i} | \hat{H}_{KS} | \phi_{j} \rangle, \ S_{ij} = \langle \phi_{i} | \phi_{j} \rangle$$

$$\Gamma_{L,R}(E) = i [\mathbf{\Sigma}_{L,R}(E) - \mathbf{\Sigma}_{L,R}^{\dagger}(E]$$

$$K_n(\mu) = \frac{2}{h} \int_{-\infty}^{\infty} dE \, \mathcal{T}_{\rm el}(E) (E-\mu)^n \left(-\frac{\partial f(E,\mu)}{\partial E}\right)$$

Electronic conductance, thermopower, and thermal conductance:

 $G = e^2 K_0(\mu)$

 $S = K_1(\mu) / [eTK_0(\mu)]$

$$\frac{-\partial f(E,\mu)}{\partial E} = \{2k_B T [1 + \cosh(E-\mu)/k_B T]\}^{-1}$$

 $\kappa_{\rm el} = \{K_2(\mu) - [K_1(\mu)]^2 / K_0(\mu)\} / T$

JCEL 11, 78 (2012)

PHYS824: Nanophysics and Nanotechnology

Third-Nearest-Neighbor π-Orbital Tight-Binding Hamiltonian For Graphene

PHY5824: Nanophysics and Nanotechnology

Zigzag GNR: Fundamentals

PHYS824: Nanophysics and Nanotechnology

First-Principles Quantum Transport Modeling Charge, Heat and Spin Transport: NEGF+DFT

PHYS824: Nanophysics and Nanotechnology

How to Apply NEGF-DFT to Devices Containing Thousands of Atoms

PHYS824: Nanophysics and Nanotechnology

Gate Voltage Effect in All Carbon-Hydrogen GNRFET Composed of ~7000 Atoms

Nikolić group, PRB **81**, 155450 (2010)

PHYS824: Nanophysics and Nanotechnology

NEGF-DFT For Multiterminal Devices

PHYS824: Nanophysics and Nanotechnology

5aha et al., J. Chem. Phys. **131**, 164105 (2009)

Phonon Thermal Conductance via NEGF Coupled to Minimal Force Constant 4NNN Model

Phonon conductance:

$$\kappa_{\rm ph} = \frac{\hbar^2}{2\pi k_B T^2} \int_0^\infty d\omega \,\omega^2 \mathcal{T}_{\rm ph}(\omega) \frac{e^{\hbar\omega/k_B T}}{(e^{\hbar\omega/k_B T} - 1)^2} \begin{array}{ll} \mathcal{T}_{\rm ph}(\omega) &= & \operatorname{Tr}\left\{\Lambda_L(\omega)\mathbf{G}(\omega)\Lambda_R(\omega)\mathbf{G}^{\dagger}(\omega)\right\} \\ \mathbf{G}(\omega) &= & \left[\omega^2 \mathbf{M} - \mathbf{K} - \mathbf{\Pi}_L(\omega) - \mathbf{\Pi}_R(\omega)\right]^{-1} \end{array}$$

 \Box Why no phonon-phonon scattering? $W \ll \ell pprox 677~\mathrm{nm}$ at 300 K [APL 98, 141919 (2011)]

Empirical 4NNN force constant matrix:

$$_{1,n}=\left(egin{array}{ccc} \phi_{\mathrm{r}}^{(n)} & 0 & 0 \ 0 & \phi_{\mathrm{ti}}^{(n)} & 0 \ 0 & 0 & \phi_{\mathrm{to}}^{(n)} \end{array}
ight)$$

Neighbor shell	Parameters by Saito et al. (Ref. 38)			Our parametrization		
	$\phi^{(n)}_{ m r}$	$\phi_{ m ti}^{(n)}$	$\phi_{ m to}^{(n)}$	$\phi^{(n)}_{ m r}$	$\phi_{ ext{ti}}^{(n)}$	$\phi_{ m to}^{(n)}$
First	36.50	24.50	9.82	41.8	15.2	10.2
Second	8.80	-3.23	-0.40	7.6	-4.35	-1.08
Third	3.00	-5.25	0.15	-0.15	3.39	1.0
Fourth	-1.92	2.29	-0.58	-0.69	-0.19	-0.55
		$\phi_t^{(1)} +$	$6\phi_t^{(2)} + 4$	$4\phi_t^{(3)} +$	$-14\phi_t^{(4)}$) = 0

PHYS824: Nanophysics and Nanotechnology

Phonon Thermal Conductance via NEGF Coupled to Brenner Empirical Potential or DFT

Brenner empirical interatomic potential for hydrocarbon systems (GULP or GPAW):

$$V_{ij} = f_{ij}^{C}(f_{ij}^{R} - \bar{b}_{ij}f_{ij}^{A}), \quad \bar{b}_{ij} = \frac{1}{2}(b_{ij}^{\sigma-\pi} + b_{ji}^{\sigma-\pi}) + \Pi_{ij}^{RC} + b_{ij}^{DH},$$

$$f_{ij}^{R} = \left(1 + \frac{Q}{r_{ij}}\right)Ae^{-\alpha r_{ij}}, \quad b_{ij}^{\sigma-\pi} = \left(1 + \sum_{k \neq i,j} f_{ik}^{C}g_{ijk}\right)^{-1/2},$$

$$f_{ij}^{A} = \sum_{n}^{3} B_{n}e^{-\lambda_{n}r_{ij}}, \quad g_{iik} = \sum_{k \neq i,j}^{5} \beta_{i}\cos^{i}[\theta_{ijk}].$$

$$m_{b_{ij}}^{DH} = \frac{T_{0}}{2}\sum_{k,l \neq i,j} f_{ik}^{C}f_{jl}^{C}(1 - \cos^{2}[\Theta_{ijkl}]).$$

$$K_{I\alpha,J\beta} = \frac{\partial V}{(\partial R_{I\alpha}\partial R_{J\beta})}$$

The Brenner EIPs are short range, so they cannot accurately fit the graphene dispersion over the entire BZ. However, the thermal transport depends more sensitively on the accuracy of acoustic phonon frequencies near the zone center where the longitudinal- and transverse-acoustic (LA and TA) velocities and the quadratic curvature of the out-ofplane acoustic (ZA) branch are determined. Conversely, only weak thermal excitation of the optical phonons and acoustic phonons near the BZ boundary occurs around room temperature because of the large Debye temperature (~ 2000 K) of graphene.

□First-principles brute force method to obtain the force constant matrix (GPAW):

we displace each atom I by $Q_{I\alpha}$ in the direction α ={x,y,z} to get the forces $F_{I\alpha \in J\beta}$ on atom J \neq I in direction β

$$K_{I\alpha,J\beta} = [F_{J\beta}(Q_{I\alpha}) - F_{J\beta}(-Q_{I\alpha})]/2Q_{I\alpha}$$

 $K_{I\alpha,I\beta}=-\Sigma_{J\neq I}K_{I\alpha,J\beta}$ for intra-atomic elements impose momentum conservation

PHYS824: Nanophysics and Nanotechnology

Which Method Should You Use: Minimal 4NNNFC vs. Brenner EIP vs. DFT

PHYS824: Nanophysics and Nanotechnology

Electron and Phonon Transport in ZGNRs and CGNRs with Nanopores

PHYS824: Nanophysics and Nanotechnology

NEGF modeling of nanoscale thermoelectrics

Graphene-Based Topological Insulators with Nanopores as Thermoelectric

PHYS824: Nanophysics and Nanotechnology

Graphene-Based Topological Insulators with Nanopores as Thermoelectric

PHYS824: Nanophysics and Nanotechnology

Thermoelectricity in Single-Molecule Nanojunctions

PHYS824: Nanophysics and Nanotechnology

Toward Metal-Free Molecular Electronics

PHYS824: Nanophysics and Nanotechnology

ZGNR|molecule|ZGNR Thermoelectric Devices Based on Evanescent Mode Transport

Nikolić group, PRB **84**, 041412(R) (2011) + J. Comp. Electronics **11**, 78 (2012)

PHYS824: Nanophysics and Nanotechnology

Three-Terminal Single-Molecule Nanojunction Thermoelectrics

PHYS824: Nanophysics and Nanotechnology

Fabrication of Single-Molecule Nanojunctions with Graphene Electrodes

van der Zant Lab, Nano Lett. 11, 4607 (2011)

depositing molecules inside a few-layer graphene nanogap (of the size 1-2 nm) formed by feedback controlled electroburning

Gatable I-V characteristics at room temperature

PHYS824: Nanophysics and Nanotechnology

Coupled Electron-Phonon Transport via NEGF

NEGF modeling of nanoscale thermoelectrics

PHYS824: Nanophysics and Nanotechnology

New Routes for ZT Optimization Brought by Low-Dimensional and Nanoscale Devices

PHYS824: Nanophysics and Nanotechnology

NEGF modeling of nanoscale thermoelectrics

-V

R

Β

83, 195415 (2011)

Conclusions in Pictures

PHYS824: Nanophysics and Nanotechnology