Energy Distribution Function of Quasiparticles in Mesoscopic Wires

H. Pothier, S. Guéron, Norman O. Birge,* D. Esteve, and M. H. Devoret

Service de Physique de l'Etat Condensé, Commissariat à l'Energie Atomique, Saclay, F-91191 Gif-sur-Yvette, France

(Received 25 April 1997)

between quasiparticles only. The boundary conditions are imposed by the reservoir electrodes: $f(0, E) = [1 + \exp(\frac{E}{k_BT})]^{-1}$ and $f(1, E) = [1 + \exp(\frac{E + eU}{k_BT})]^{-1}$. If no scattering between quasiparticles occurs during the diffusion time, the distribution function is the solution $f_0(x, E)$ of Eq. (1) with no collision integral [8]:

$$f_0(x, E) = (1 - x)f(0, E) + xf(1, E).$$
 (2)

The function $f_0(x, E)$ has a well-defined intermediate step for $|eU| \gg k_B T$, as shown in Fig. 1 as solid lines. f(E)

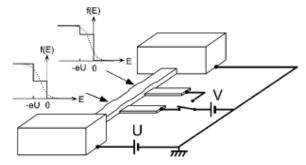


FIG. 1. Experimental layout: a metallic wire of length L is connected at its ends to reservoir electrodes, biased at potentials 0 and U. In the absence of interaction, the distribution function at a distance X = xL from the grounded electrode has an intermediate step f(E) = 1 - x for energies between -eU and 0 (solid curves) (we assume U > 0). When interactions are strong enough to thermalize electrons, the distribution function is a Fermi function, with a space-dependent temperature and electrochemical potential (dotted curves). In the experiment, the distribution function is obtained from the differential conductance dI/dV(V) of the tunnel junction formed by the wire and a superconducting electrode placed underneath.

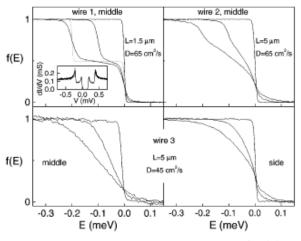


FIG. 2. Inset of the top left panel: Measured dI/dV(V) of the tunnel junction to wire 1 for $U=0.2~\mathrm{mV}$. In the four panels, distribution functions, obtained from the deconvolution of such dI/dV(V) curves, for U = 0, 0.1, and 0.2 mV in the middle of a 1.5- μ m-long wire with a diffusion constant $D \sim 65 \text{ cm}^2/\text{s}$ (wire 1, top left); in the middle of a 5- μ mlong wire with the same diffusion constant (wire 2, top right); in the middle (bottom left) and at 1.1 μ m from the grounded reservoir electrode (bottom right) of a 5-\mu m-long wire (wire 3) with $D \sim 45 \text{ cm}^2/\text{s}$. Also plotted as a dotted line in the top left panel is the prediction for the noninteracting distribution function [Eq. (2)] for U = 0.2 mV. All measurements were performed at 25 mK. The cross-sectional area of the three wires is nominally the same: $45 \times 110 \text{ nm}^2$. The tunnel resistances of the junctions were $R_T - 10 \text{ k}\Omega$ for wires 1 and 2, $R_T = 200 \text{ k}\Omega$ for the middle junction on wire 3, and $R_T - 75 \text{ k}\Omega$ for the side junction on wire 3.

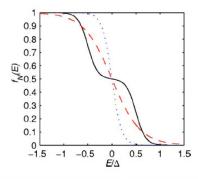


FIG. 3. (Color online) Quasiparticle energy distribution function in the center of a normal-metal wire placed between two normal-metal reservoirs and biased with a voltage $eV = 10k_BT$. The three lines correspond to three extreme limits: solid line, $L \ll \ell_{e-e}, \ell_{e-\mathrm{ph}}$ (nonequilibrium limit); dashed line, $\ell_{e-e} \ll L \ll \ell_{e-\mathrm{ph}}$ (quasiequilibrium limit); and dotted line, $\ell_{e-e}, \ell_{e-\mathrm{ph}} \ll L$ (equilibrium limit).