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From Bulk Graphene Lattice to GNRs

11-AGNR: Empty circles denote hydrogen 
atoms passivating the edge carbon atoms, and 

the black and gray rectangles represent atomic 
sites belonging to different sublattices of the 
honeycomb lattice of graphene. The 1D unit cell 

(or supercell)  distance and ribbon width are 
represented by da and Wa, respectively. The 

carbon-carbon distance on the n-th dimer line is 
denoted as an.

6-ZGNR:The empty circles and 
rectangles follow the same 

convetion as for AGNR. The 1D 
unit cell (or supercell) distance 

and the ribbon width are denoted 
as dz and Wz, respectively.
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From Bulk Graphene Lattice 
to Single-Wall CNTs
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Terminology: (n,0) – zigzag CNT | (n,n) – armchair CNT | (n,m) n≠m chiral CNT | m<n gives unique def.
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Zigzag and Armchair CNTs are NOT 
Related to Zigzag and Armchair GNRs

STM image of single-wall CNT

zigzag CNT armchair CNT
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How to Compute Subband Structure of a
Quantum Wire Defined on Tight-Binding Lattice

i-1 i i+1
The supercell should be 

sufficiently large so that 
matrix elements of the 

Hamiltonian and ovelap matrix have 
non-zero values only for elements 

corresponding to the orbitals 
within the given supercell, or wih
its nearest-neighbor cells only. 
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Application to GNR: Supercells and Block 
Matrix Structure of TB Hamiltonian
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GNR in Equilibrium: Subband Structure and 
the Corresponding Density of States
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Experimental Methods to Fabricate GNRs
Science  319, 1229 (2008): Chemical Derivation

Nature Nanotech. 3, 397 (2008): STM Nanolithography

Nature 458, 872 (2009): SWCNT Unzipping
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Band vs. Transport Gaps in GNRs with Rough 
Edges: Coulomb Blockade Effects
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Controlled Formation of GNR Edges:
Top-Down vs. Bottom-Up Approaches
top-down bottom-up
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GNRs out of Equilibrium: 
Conductance Quantization Theory
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GNR out of Equilibrium: 
Conductance Quantization Experiment

PR
L 
60

, 8
48

 (1
98

8)

PRB 78, 161409(R) (2008)
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Gated ZGNR: Ballistic Transport 
Turns Into “Pseudo-Diffusive”
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Electronic Structure of CNTs: 
From Graphene via BZ Folding Method

Metallic 1D energy bands are generally 
unstable under a Peierls distortion →
CNT are exception since their tubular 
structure impedes this effects making 
their metallic properties at the level 

of a single molecule rather unique!

armchair 
(n,n)

zigzag 
(n,0)

chiral 
(n,m)

metallic all metalic n=3p 2n+m=3l

semiconducting n≠3p 2n+m ≠ 3l

(5,5) ACNT
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CNTs in Equilibrium: Subband Structure and 
the Corresponding Density of States
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CNTs out of Equilibrium: 
Conductance Quantization Theory

Infinite metallic (5,5) armchair CNT

CNT-CNT Junction
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CNTs out of Equilibrium: 
Conductance Quantization Experiment
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GNR and CNT Subband Structure: 
Simplistic Tight-Binding Hamiltonians vs. DFT

True band structure, as  
obtained from DFT, is also 
affected by the curvature 
of the CNT and variations 
in the bond lengths which 
are not all equivalent. The 

effect are more 
pronounced in CNT of small 
diameter, but they do not 

alter significantly the 
simple picture based on 
electronic structure of 

graphene.
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New Channel Materials for Nanoscale FETs: 
AGNR vs. Semiconducting CNTs
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Crossed Nanowires for 
Negative Differential Resistance-Based Devices

JCEL 12, 542 (2013)
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ZGNR Conductance

EPL 80, 47001 (2007)
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Magnetic Ordering Along Edges of ZGNR 
via DFT
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Magnetic Ordering Along Edges of  ZGNR 
Reproduced via Mean-Field Hubbard Hamiltonian

Hubbard model describes electrons hopping on 
tight-binding lattice + on-site Coulomb interaction 

between electrons of opposite spin

Mean-field decoupling of the Hubbard term (equivalent 
to Hartree-Fock when local spin quantization axis is 

chosen along the direction of local spin ordering)

Self-consistent loop requires spin-resolved particle demsity
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Magnetic Ordering in ZGNR Disappears at 
Finite Bias Voltage as Nonequilbrium Phase Transition
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Midgap (E=0) States vs 
Sublattice Imbalance

Courtesy of J. Fernández-Rossier

1 E=0  state

S=1/2 N=19, 
NA=9

NB=10

2 E=0 
states

S=1
N=22, 
NA=10
NB=12

Number of E=0 states in nearest-neighbour 
TB model on  bipartite lattice: Nz=|NA-NB|

M. Inui, S. A. Trugman, and E. Abrahams, 
PRB49, 3190 (1994). 

Zero energy states  are sublattice polarized
(in majority sublattice).

Global sublattice imbalance: |NA-NB|>0 
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Electronic Structure in 
Interacting Picture

Courtesy of J. Fernández-Rossier

Superatomic Hunds’s rule

S=7/2

Spin polarization results from Hund’s rule and the absence of kinetic energy 
penalty in sublattice unbalanced graphene structures.
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No Sublattice Imbalance S=0 Systems

Courtesy of J. Fernández-Rossier

0% Sublattice polarized

Low energy states 
Predominantly
on the Edge

No strict zero energy states

Low energy edge states
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Large Hexagons have ferromagnetic edges
Total spin S=0 (AF inter-edge coupling)

Small hexagons have no local moments, larger ones are 
compensated ferrimagnets (both with S=0)

Competition between Coulomb interaction and AB hybdrization
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Crash Course on Spin-Orbit Coupling

SO deflection force:
x

y
z
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Topological Insulators Predicted Theoretically by 
Analyzing Band Structure of GNRs with SOC 

PRL 95, 226801 (2005)

PRB 81, 035428 (2010)

Quantized spin Hall conductance in 4-terminal geometry
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Where Does Spin-Orbit Coupling in Graphene 
Comes From: DFT vs. Fitted TB
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How big is intrinsic SO coupling in graphene? 
Answer: PRB 80, 235431 (2009) and PRB 82, 245412 (2010) 
Due to a finite overlap between the neighboring pz and 

dxz ,dyz orbitals, the intrinsic splitting is linearly 
proportional to the spin-orbit splitting of the d states 

orbitals higher than d have a smaller overlap and 
contribute less. In contrast, due to the absence of the 
direct overlap between the pz and σ–band orbitals, the 
usually considered  spin-orbit splitting induced by the  
σ-π mixing depends only quadratically on the atomic 
spin-orbit splitting, giving a negligible contribution

DFT TBH
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GNR + Heavy Adatoms  = Realistic
2D Topological Insulator at Room Temperature

Indium (Z=49) and
thallium (Z=81) favor the 
high-symmetry position 
and are nonmagnetic, 

while their partially filled 
p shells ensure that the 
Rashba SOC they also 
mediate in graphene is 

benign at the Dirac 
points
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