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This talk reviews, from an historical perspective, a chapter in the development of
quantum transport theory within the framework of self-consistent non-equilibrium
Green’s functions.

1 INTRODUCTION

Nearly forty years have sped by since Leo Kadanoff and I worked in Copen-
hagen on understanding the role of conservation laws and the description of
transport in quantum many particle systems. To set the stage for this meeting,
I would like to describe here the physics and historical background of our work
in these early days.

First a few biographical notes. As the photographs that graced the dust
jacket of our 1962 book Quantum statistical mechanics1 show, Leo and I were
both in our mid-twenties at the time. When the two of us started life in the
1930’s, our parents quite coincidentally lived just about a block apart in In-
wood, a neighborhood in upper Manhattan in New York City, mine on Payson
Avenue (no. 1 on the map) and his on Seaman Avenue (no. 2). Our immedi-
ate neighborhood turned out to be quite a fertile one for theoretical physicists.
Roy Glauber grew up in the same apartment building as the Kadanoffs, and
Shelly Glashow lived just a block or so away. We all went to the same elemen-
tary school (no. 3 on the map), imaginatively named PS52 (PS for “Public
School”), and all were at Harvard in the 1950’s.

The theorists at Harvard in the late fifties were very excited by recent
developments in the many body problem, and particularly by the paper by Paul
Martin and Julian Schwinger2 on the formalism for finite temperature many
body theory.3. Even though Leo and I were graduate students in physics at the
same time we did not collaborate together until later. Leo worked with Paul
Martin, writing a thesis, Theory of many particle systems: superconductivity,
and with Roy Glauber as well, writing a second thesis, Acceleration of a particle
by a quantized electric field; I was a student of Julian Schwinger, and wrote
only one thesis, Field theoretic approach to the properties of the solid state.4

Discussing future plans at our graduation in 1960, we found out that we
were both independently headed as postdocs in September to Niels Bohr’s In-
stitute in Copenhagen – then officially the University Institute for Theoretical
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Figure 1: Leo Kadanoff (left) and Gordon Baym (right), circa 1961; from the dust jacket of
Quantum Statistical Mechanics.

Physics. Copenhagen, with far more bicycles than cars on the streets, was
one of the foremost gathering places of physicists from around the world5 – a
remarkable experience for two fresh Harvard Ph.D.’s. I stayed for two years,
and Leo for a little over one year.

2 THE PUZZLES

Since the main emphasis at the Institute at the time was nuclear physics and
our focus was on condensed matter problems we had little mentoring from
the senior people, with the important exception of Gerry Brown; primarily we
worked on our own. Leo’s and my collaboration began one day in our first
Spring in Copenhagen, when he raised the question of how to construct in
the Martin-Schwinger Green’s function formalism approximations to the two
particle propagators that preserved the simple conservation laws. For example,
the operator number conservation law,

∂ρ(rt)
∂t

+∇ ·�j(rt) = 0, (1)

implies that correlation functions of the density and current with an arbitrary
operator, O(r′t′), should obey

∂

∂t
〈T (ρ(rt)O(r′t′))〉+∇ · 〈T (�j(rt)O(r′t′))〉

= 〈[ρ(rt),O(r′t)])〉δ(t − t′). (2)
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Figure 2: The Inwood area of upper Manhattan.

where T denotes time-ordering of the operators.

Leo’s interest in the problem arose from the question of how to write the
BCS theory of superconductivity in a way that would yield correctly the Ander-
son mode – the longitudinal collective oscillation of a neutral superconductor6

(now famous in high energy physics as the Higgs boson). As originally for-
mulated the BCS theory did not give two-particle correlation functions that
obeyed the number conservation condition (2). Equivalently, the problem was
how to build local gauge invariance into the theory. The more general issue
was how to construct, within the Green’s function formalism, consistent quan-
tum theories of transport. This problem was nagging me too, because, as Paul
Martin pointed out at my doctoral defense, I had essentially gotten it wrong
in my thesis. In trying to calculate sound wave damping in a metal via simple
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Green’s function approximations, I was missing a factor of 4/5 compared with
a calculation via the Boltzmann equation. Paul immediately realized that the
lack of this factor indicated a conceptual error in the underlying physics. It is
very hard to get a factor of five from simple mistakes – in this case it comes
from

∫
P2(cos θ)2, which arises from correctly including the scattering back-

into-the-beam term in the transport equation. Leo’s and my problems were
closely related.

x x'

(a) (b) (c)

Figure 3: (a) The one loop approximation, (b) the self-energy corrections on the lines that
are included, and (c) scattering into-the-beam corrections.

To see how approximations can fail obey to the conservation laws consider
going beyond the lowest order evaluation of the density-density and current-
density correlation functions in the Hartree-Fock approximation, i.e., as a single
loop of Green’s functions. The lowest order calculation, Fig. 3a, in which the
lines are Hartree-Fock Green’s functions, obeys the conservation laws. The
trouble starts when one tries to improve the Green’s functions beyond lowest
order, including better self-energies, as shown in Fig. 3b, but not vertex correc-
tions. In the one loop approximation, the density-density correlation function,
in imaginary time, is given (in the notation of Ref. 1) by

〈T (ρ(rt)ρ(r′t′))〉 = ∓T 2
∑
νν′

∫
d3p

(2π)3

∫
d3p′

(2π)3
G(p, zν)G(p′, zν′)

×ei(�p−�p ′)·(�r−�r ′)e−i(zν−zν′)(t−t′). (3)

The current-density correlation function is similarly

〈T
(
�j(rt)ρ(r′t′)

)
〉 = ∓T 2

∑
νν′

∫
d3p

(2π)3

∫
d3p′

(2π)3
�p+ �p ′

2m
G(p, zν)G(p′, zν′)

×ei(�p−�p ′)·(�r−�r ′)e−i(zν−zν′)(t−t′). (4)

Trying to see if the correlation functions obey the number conservation law,
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Eq. (1), we find, using Dyson’s equation for the Green’s functions,

G−1(p, z) = z − p2

2m
+Σ(p, z), (5)

that

∂

∂t
〈T (ρ(rt)ρ(r′t′))〉+∇ · 〈T

(
�j(rt)ρ(r′t′)

)
〉

= ±iT 2
∑
νν′

∫
d3p

(2π)3

∫
d3p′

(2π)3
(Σ(p, zν)− Σ(p′, zν′)G(p, zν)G(p′, z′ν)

×ei(�p−�p ′)·(�r−�r ′)e−i(zν−zν′)(t−t′). (6)

The right side, which involves the difference of the self-energies, does not vanish
in general beyond the Hartree-Fock approximation. Even with a constant
particle lifetime, τ , corresponding to scattering by random impurities, the
correlation functions fail to obey the conservation laws. For a constant lifetime
the spectral function of G is

A(p, ω) =
1/τ

(ω − p2/2m)2 + 1/4τ2
, (7)

with the corresponding self-energy given by Σ(z) = ±i/2τ (where the + sign
is for the complex frequency z in the upper half plane, and the - sign for z in
the lower half plane). In order to include the conservation laws correctly it is
necessary to include the scatterings between the two lines, as shown in Fig. 3c;
these correspond to including the scattering back-into-the-beam terms in the
Boltzmann equation.

The subtle feature of the problem of the correlation functions obeying
the conservation laws was that it was not sufficient merely to include particle
number and momentum conservation at the individual vertices in a diagram-
matic expansion. Simple approximations to the correlation functions need not
obey the conservations laws, even though particle number and momentum are
conserved at the individual vertices.

The second piece of the puzzle of constructing a quantum theory of trans-
port phenomena was that it required summation of an infinite set of diagrams.
Let me illustrate the point by means of the simple example of the electrical
conductivity of a metal. Consider first the trivial example of classical carriers
of charge e moving at velocity �v in the presence of an electrical field �E(t) and
a friction force described by a scattering time τ . Newton’s equation reads

m
d�v

dt
= e �E(t)−m

�v

τ
; (8)
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for an electric field of frequency ω, the velocity is,

�v(ω) =
e

m

�E(ω)
−iω + 1/τ . (9)

Since the electrical current produced is �j = ne�v = σ �E, one finds the complex
conductivity,

σ(ω) =
ne2

m

τ

1− iωτ
, (10)

whose real part,

Re(σ) =
ne2

m

τ

1 + ω2τ2
, (11)

determines the dissipation. In the collisionless regime, ωτ 
 1, Re(σ) ∝ τ−1,
i.e., proportional to the scattering rate, or scattering matrix elements, M�p�p ′ ,
squared. This result follows directly from perturbation theory. On the other
hand, in the collision-dominated regime, ωτ � 1, the dissipation Re(σ) ∝ τ ,
is inversely proportional to the matrix elements squared, a very difficult result
to derive by summing diagrams in perturbation theory.

The standard derivation of the conductivity in terms of scattering ma-
trix elements is via the Boltzmann equation, which for electrons scattering on
impurities reads,

∂f�p

∂t
+ �v�p · ∇�rf�p − e �E · ∇�pf�p

= −
∫

d3p′

(2π)3
2π|M�p�p ′ |2δ(ε�p − ε�p ′)[f�p(1− f�p ′)− f�p ′(1− f�p)]. (12)

Linearizing the distribution function in the form f�p = f0
�p+∇�pf

0
�p ·�u, one readily

finds from Eq. (12) that

�u = e �E
τtr

1− ωτtr
, (13)

and

σ =
ne2

m

τtr
1− iωτtr

, (14)

as in Eq. (10). Here the transport scattering time is given by

1
τtr

= −
∫

d3p′

(2π)3
2π|M�p�p ′ |2δ(ε�p − ε�p ′)(1 − cos θ�p�p ′). (15)
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The cos θ�p�p ′ term is a result of the scattering back into the beam, described
by the final f�p ′(1− f�p) collision term on right side of Eq. (12).

The conductivity is given more generally in terms of the current-current
correlation function, 〈jj〉(z) (e.g., the Fourier transform of the retarded com-
mutator) by

σ(ω) =
i

ω

(
〈jj〉(ω + iη) +

n

m

)
. (16)

To derive the low frequency limit from a diagrammatic expansion of the cor-
relation function in terms of Green’s functions, one must sum an infinite set
of diagrams, and to find the correct transport coefficients, include the scat-
tering back-into-the-beam terms corresponding to Fig. 3c. The Boltzmann
equation carries out such a summation brilliantly. The failure of approximate
correlation functions to include the conservation laws meant that one could
not correctly describe low frequency long wavelength transport phenomena,
so well accounted for by the Boltzmann equation. The challenges facing us
in building theories of quantum transport were thus to learn how to include
the conservation laws in approximations to the correlation functions, and how,
from Green’s functions, to recover and generalize the basic structure of the
Boltzmann equation.

3 SELF-CONSISTENT APPROXIMATIONS

Furiously scribbling all evening after Leo posed his question, I began to see how
to include the conservation laws in two point correlations functions in terms of
self-consistent approximations. The starting point was to include in imaginary
time, from 0 to −iβ, an external potential coupled, e.g., to the density:

Hext(t) =
∫

d3rρ(rt)U(rt). (17)

The single particle Green’s function then takes the form,

G(12;U) = −i
tr

[
e−β(H−µN)T

(
e−i

∫
dtHextψ(1)ψ†(2)

)]

tr
[
e−β(H−µN)T

(
e−i

∫
dtHext

)] (18)

where T defines the time ordering along the imaginary time path, and the time
integrals are from 0 to −iβ. The next step was to choose an approximation
for the two particle Green’s function G2(U) in [0,−iβ], e.g., the Hartree-Fock
approximation illustrated in Fig. 4a. From this G2 we constructed the single

7



±

G

G

G

G

(a)

±

(b)

(c)

1

1'

2

2'

Figure 4: The procedure for deriving conserving approximations for the two particle cor-
relation functions. Illustrated here for the Hartree-Fock approximation, in (a) one chooses
an initial approximation to the two particle Green’s function, in (b) constructs the single
particle self-energy from it, and in (c) constructs the conserving two particlel correlation
function by differentiating the self-consistent one particle Green’s function.

particle self-energy Σ, as shown in Fig. 4b in Hartree-Fock. The single particle
Green’s function, G(U), obeys Dyson’s equation (5) self-consistently. The key
step now was to generate the two particle correlation function as a variational
derivative of G(U), via

δG(1, 1′;U)
δU(2)

∣∣∣∣
U=0

= ±[G2(12, 1′2+)−G(11′)G(22+)]
∣∣
U=0

≡ ±L(12, 1′2+). (19)

Figure 4c shows the resulting correlation function generated from the initial
Hartree-Fock approximation, the random phase approximation with a sum of
particle-hole ladders across the bubbles. For any starting approximation to
G2, the two particle correlation function generated as a variational derivative
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obeys the differential conservation laws.7

Leo and I immediately wrote up our first and only journal paper together,
Conservation laws and correlation functions.8 In preparing for this talk, I
scoured through old notes in Urbana, and came upon the original typewrit-
ten draft of the paper, which contains both Leo’s and my handwriting, titled,
Conservation laws and the quantum theory of transport. Recognizing his piv-
otal role in the development we listed Paul Martin as a prospective author,
but he modestly declined to be on the masthead. His name is crossed out in
the draft, and he is finally acknowledged for discussions that established the
form of the conservation laws obeyed by the two particle correlation functions.
We recognize in the draft that the self-consistent approximations for the two
particle correlation functions yield linearized Boltzmann equations. After dis-
cussing the self-consistent T -matrix approximation for the self-energy of the
single particle Green’s function G, we note that, “In the long wavelength limit
the L equation leads to a generalization of the linearized Boltzmann equation
in which the scattering cross section is proportional to |T |2. This generalization
reduces in turn to an ordinary Boltzmann equation in the low density limit.
Thus our procedure enables us to derive the linearized Boltzmann equation
from an equation which defines G(U) from a sum of ladder diagrams.” Simi-
larly, we mention deriving a Boltzmann equation from the shielded potential
approximation, and finally, we promise that “the derivation of the generalized
Boltzmann equations will be given in future publications.” The published pa-
per strangely contains no mention of the Boltzmann equation. We did return,
however, to Boltzmann equations in our book.

At Gerry Brown’s instigation, we gave a series of lectures on the quantum
many body problem in Copenhagen, and then to Ivar Waller’s group in Uppsala
in the Spring of 1961, and in following Fall to WiesOlaw Czyż’s group in Krakow
and at the Institute for Nuclear Studies at Hoża 69 in Warsaw. These lectures
became the basis for our book. Writing the book was great fun; either we would
sit together and write from scratch – actually Leo paced up and down non-stop,
while I sat putting pen to paper – or often Leo would come in, in the morning,
with the draft of a new chapter, which we would then revise. The whole book-
writing took, it seemed, less than a month. I recall the conversation with Leo
about the order of authors names on the book. Since on our first paper, my
name, being earlier in the alphabet than his, came first, he suggested that it
would be fair if we alternated our names on subsequent publications; thus the
book became Kadanoff-Baym.
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Figure 5: The succession of contours in deriving generalized Boltzmann equations, from (a)
the usual contour in imaginary time, shifted to −∞ in (b), and distorted to (c), the real
time round-trip.

3.1 Generalized Boltzmann equations

A good part of the book is devoted to deriving generalized Boltzmann equations
from self-consistent approximations for the Green’s functions, a procedure for
which Leo deserves full credit. The method begins with the Green’s function in
the presence of an external potential, Eq. (18) on [0,−iβ], Fig. 5a, as we studied
in Ref. 7. The contour of integration is then shifted back to [−∞,−∞− iβ],
as shown in Fig. 5b, and then distorted to the “round-trip” contour from −∞
to +∞ and back again to −∞ to −∞− iβ. The Green’s function is given on
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the round-trip contour by,

G(12;U) = −i
tr

[
e−β(H−µN)T

(
e−i

∮
dtHextψ(1)ψ†(2)

)]

tr
[
e−β(H−µN)T

(
e−i

∮
dtHext

)] (20)

where now T defines the time ordering along the round-trip path, as shown in
Fig. 5c, imaginary time path, and the time integrals are along the path. The
external potential need not be the same on the two sectors of the contour along
the real axis. The Green’s function on the path obeys,
(
i
∂

∂t
+

∇2

2m
− U(rt)

)
G(rt, r′t′)−

∮
Σ(rt, r̄t̄)G(r̄t̄, r′t′) = δ(r − r′)δ(t− t′).

(21)

To derive the generalized non-linear Boltzmann equation, we write the
distribution function in the Wigner form,

g<(pωRT ) =
∫

drdte−ip·r+iωt〈ψ†(1′)ψ(1)〉 (22)

where r = r1−r′1, t = t1−t′t andR = (r1+r′1)/2, T = (t1+t′1)/2. A new feature
here was to treat the energy of the particles, ω, as a variable independent of
their momentum p, thus allowing one to go beyond situations with well-defined
quasiparticles. Expansion of the single particle Green’s function equations on
the path for disturbances slowly varying in both space and time, yields the
generalized Boltzmann equation, on which we are focussing at this meeting,

∂g<

∂t
+
∂g<

∂ω
(U +ReΣ) +

p

m
· ∇R g< −∇R (U + ReΣ) · ∇pg

<

+
∂Re g

∂ω

∂Σ<

∂t
− ∂Re g

∂t

∂Σ<

∂ω
+∇pRe g · ∇RΣ< −∇R Re g · ∇pΣ<

= −Σ>g< +Σ>g<. (23)

Here

g(pzRT ) =
∫

dω

2π
(g> + g<)(pωRT )

z − ω

=
1

z − p2/2m− U(RT )− Σ(pzRT ) . (24)

Understanding how to derive general Boltzmann equations from the many
body formalism put the development of quantum transport theory on a firm
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foundation. As we wrote, “Our rather elaborate Green’s function arguments
. . . provide a means of describing transport phenomena in a self-contained way,
starting from a dynamical approximation, i.e., an approximation for G2(U) in
terms of G(U). These calculations require no extra assumptions. The exis-
tence of local thermodynamic equilibrium is derived from the Green’s function
approximations. The various quantities that appear in the conservation laws
are determined by the approximation. The theory provides at the same time
a description of what transport processes occur . . . and a determination of the
numerical qantitites that appear in the transport equations.”9 Finally, we could
derive the sound velocity of a gas from the Schrödinger equation.

3.2 Round-trip Green’s functions

A crucial ingredient in the derivation of Boltzmann equations was the use of
Green’s functions defined on the round-trip contour along the real axis. The
method was invented by Schwinger, and presented in his lectures on Brownian
motion at the Brandeis summer school in 1960, where I became familiar with it.
Although the lectures were unpublished, Schwinger did write up the ideas in his
paper Brownian motion of a quantum oscillator.10 As was always characteristic
of Schwinger, not a diagram appears in the paper. Feynman put it well in
his Talk at the First Schwinger Festspiel at the banquet for Schwinger on his
sixtieth birthday in 1978, reminiscing about their conversation at the 1948
Pocono conference: “He [Schwinger] would say, well I got a creation and then
another annihilation of the same photon and then the potential goes . . . I’d
draw a picture that looks like this. He didn’t understand my pictures and I
didn’t understand his operators, but the terms corresponded and by looking
at the equations we could tell . . . that we had both come to the same mountain
. . . .”11

The round-trip technique was also employed in the context of quantum
electrodynamics in 1961-62 by Kalyana T. Mahanthappa, a fellow Schwinger
graduate student at Harvard, and Pradip Bakshi, a slightly later student of
Schwinger’s.12,13 Actually, Robert Mills (of Yang-Mills), while at the University
of Birmingham in 1962, wrote but did not publish, a lovely set of notes on
round-trip Green’s function techniques,14 which formed the basis for his later
book.15 He refers in these notes to Schwinger’s 1961 paper, and remarks that,
“The present work, some of which has, I believe, been duplicated independently
by Baym and Kadanoff, following the methods of Martin and Schwinger, makes
use of the thermodynamic Wick’s theorem of Matsubara and Thouless, and
others, with the integration contour in the complex time plane distorted to
include the real axis.” The method was then used by Leonid Keldysh in the
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Soviet Union, described first in his 1964 paper.16 Our book was translated into
Russian in the same year17 but Keldysh did not refer to it, writing rather, “Our
diagram technique wlll be close to Mills’ technique for equilibrium systems,”
citing Mills’ notes. Schwinger influence was widely felt.

= ±1
2 ± 1

2
= =

= = =
n

1
n

= = =
n

1
n

(a)

(b)

(c)

Figure 6: Φ and the corresponding self-energies Σ for (a) the self-consistent Hartree-Fock
approximation, (b) the self-consistent T-matrix approximation, (c) the shielded potential
approximation.

3.3 Φ-derivable approximations

Leo left Copenhagen in late 1961 to accept an Assistant Professorship at the
University of Illinois in Urbana, then one of the few centers of activity in many
body physics. I was offered the same irresistible position at Illinois shortly after
Leo arrived, but stayed in Copenhagen until September 1962 and then spent
a year at Berkeley before going to the midwest. The problem that intrigued
me in Copenhagen was how to delineate the structure of approximations to
multiparticle Green’s functions that would include the conservation laws.18 The
key turned out to be to start with a functional Φ[G] of the fully self-consistent
Green’s function, G, from which one generates the self-energy self-consistently
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as a variational derivative of Φ with respect to G:

δΦ[G] = trΣδG. (25)

The Green’s function, G, then self-consistently obeys Dyson’s equation
with the self-energy, Σ, given by Eq. (25). The procedure is illustrated in
Fig. 6, which shows Φ and the corresponding self-energies for the self-consistent
Hartree-Fock, T-matrix, and shielded potential approximations. All correla-
tions derived as variational derivatives then obey the conservation laws. The
method made clear the relations between the conservation laws at the ver-
tices and the macroscopic conservation laws. An extra bonus of this procedure
was that various methods of calculating the thermodynamics from the self-
consistent G, e.g., coupling constant integration, all lead to the same result for
the partition function,19

lnZ = ±[Φ[G]− trΣG+ tr log(−G)]. (26)

In the early 1960’s we could only apply the transport theory to a limited
number of essentially exactly soluble problems, e.g., systems near local thermo-
dynamic equilibrium, and the Landau theory of the normal Fermi liquid. The
present explosion in computing power now offers the possibility of solving self-
consistent approximations numerically, as in the GWmethod in solids based on
the shielded-potential approximation.20,21 Extensions of the approach to sys-
tems with condensates,22−24 and to relativistic systems, including electrody-
namic and quark-gluon plasmas, both in equilibrium and non-equilibrium,25−27

open new windows to deal with systems of current experimental interest such
as Bose condensed atomic clouds and ultrarelativistic heavy-ion collisions. As
we see from the entirety of papers at this conference, we are standing on the
threshold of a much deeper understanding of transport and equilibrium phe-
nomena in a wide variety of interacting systems.
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