Introduction to Density Functional Theory

Branislav K. Nikolić
Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A.
http://wiki.physics.udel.edu/phys824
Why Study DFT: Shows the Limitations of Simple Models of Solids

Introduction to DFT

PHYS824: Nanophysics and Nanotechnology

FIG. 2. *Ab initio* and nearest-neighbor tight-binding dispersions of graphene. (a) The converged *ab initio* calculation of the graphene π and π^* electronic bands is shown by the full lines. The dashed lines represent the tight-binding dispersion of Eq. (6) with $s_0 = 0$ and $\gamma_0 = -2.7$ eV. (b) Difference ΔE between the *ab initio* and tight-binding band structures.

PHYSICAL REVIEW B 66, 035412 (2002)

Tight-binding description of graphene

S. Reich, J. Maultzsch, and C. Thomsen
Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
P. Ordejón
Institut de Ciència de Materials de Barcelona (CSIC), Campus de la U.A.B. E-08193 Bellaterra, Barcelona, Spain
Why Study DFT: Makes Possible Search for New Materials *In Silico*

Theory

Topological insulators in Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ with a single Dirac cone on the surface

Hailun Zhang1, Chao-Xing Liu1, Xiao-Liang Qi1, Xi Dai1, Zhong Fang1 and Shou-Cheng Zhang1,4

DFT calculation

Zhang *et al.*, Nature Physics, 5, 438 (2009)

Experiment

ARPES

Bi$_2$Se$_3$

Xia *et al.*, Nature Physics, 5, 398 (2009)

Why Study DFT: When Combined with Machine Learning It Can Predict New Materials

Example: PRL 108, 068701 (2012) identifies via high-throughput DFT+GW calculations of ∼260 generalized I_pIII_qVI_r chalcopyrite materials, out of which 20 are highly efficient for photovoltaic applications (including best known as well as previously unrecognized ones).
Why Study DFT: Shows the Limitations of Simple Models of Magnetic Materials

Current Perspectives

Spin transfer torques

D.C. Ralpha,*, M.D. Stilesb

Fig. 4. Model band structures for ferromagnets. The solid red (dashed blue) curves give the majority (minority) bands along two high symmetry directions through the Brillouin zone center, Γ. Panel (a) gives bands calculated in the LSDA for face-centered cubic (fcc) Co. The dotted black curve shows what the energy of the s–p band would be if it were not hybridized with the d bands. The bars to the right of (a) show the width of the d bands and the shift between the majority and minority bands. The dashed arrows in (a) indicated the widths of avoided level-crossings due to the hybridization between the s–p and d bands of the same symmetry along the chosen direction. Panel (b) gives a schematic version of a Stoner model for a ferromagnet. The exchange splitting is larger than in (a) in order to produce a reasonable size moment. The majority and minority Fermi surfaces are more similar to each other than they are for the LSDA model. Panel (c) gives a schematic s–d model band structure. The current-carrying s–p bands have a very small splitting due to the weak exchange interaction with the localized d-states. The majority and minority Fermi surfaces are almost identical.
Why Study DFT: When Combined with Quantum Transport It Can Predict Realistic New Devices

- Graphite: $a_{\text{hex}} = 2.46 \, \text{Å}$
- Co: $a_{\text{hex}} = 2.42 \, \text{Å}$
- Ni: $a_{\text{hex}} = 2.49 \, \text{Å}$
- Cu: $a_{\text{hex}} = 2.57 \, \text{Å}$

Ni-Gr mismatch only 1.3%

TMR_{optimistic} = \frac{G^P - G^{AP}}{G^{AP}}

TMR_{pesimistic} = \frac{G^P - G^{AP}}{G^P + G^{AP}}
Quantum-Mechanical Many-Body Problem for Electrons in Solids

To calculate material properties, one has to take into account three terms: The kinetic energy favoring the electrons to move through the crystal (blue), the lattice potential of the ions (green), and the Coulomb interaction between the electrons (red). Due to the latter, the first electron is repelled by the second, and it is energetically favorable to hop somewhere else, as depicted. Hence, the movement of every electron is correlated with that of every other, which prevents even a numerical solution.

Many traditional approaches to solving difficult many-body problem begin with the Hartree-Fock approximation, in which many-particle wavefunction is approximated by a single Slater determinant of orbitals (single-particle wavefunctions) and the energy is minimized. These include configuration interaction, coupled cluster, and Møller-Plesset perturbation theory, and are mostly used for finite systems, such as molecules in the gas phase. Other approaches use reduced descriptions, such as the density matrix or Green function, but leading to an infinite set of coupled equations that must somehow be truncated.
Density Functional Theory Approach to Quantum Many-Body Problem

- **Conventional quantum-mechanical approach to many-body systems:**
 \[v(r) \xrightarrow{SE} \Psi(r_1, r_2 \ldots, r_N) \xrightarrow{\text{observables}} E_{v,0} = E_v[\Psi_0] = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle \leq \langle \Psi' | \hat{H} | \Psi' \rangle = E_v[\Psi'] \]
 \[n(r) = N \int d^3r_2 \int d^3r_3 \ldots \int d^3r_N \Psi^*(r, r_2 \ldots, r_N) \Psi(r, r_2 \ldots, r_N) \]

- **DFT conceptual structure:**
 \[n(r) \xrightarrow{\Psi(r_1, \ldots, r_N)} v(r) \]

Knowledge of electron density implies knowledge of the wave function and the potential, and hence of all other observables. Although this sequence describes the conceptual structure of DFT, it does not really represent what is done in actual applications of it, which typically proceed along rather different lines, and do not make explicit use of many-body wave functions.

- **DFT in computational practice:**
 Local Density Approximation (LDA) is an approximation which allows to calculate material properties but which dramatically simplifies the electronic correlations: Every electron moves independently, i.e., uncorrelated, within a time-averaged local density of the other electrons, as described by a set of single-particle Kohn-Sham equations whose solutions (“orbitals”) are used to built the density.
A Bird’s-Eye View of Density-Functional Theory

Klaus Capelle

Departamento de Física e Informática
Instituto de Física de São Carlos
Universidade de São Paulo
Caixa Postal 369, São Carlos, 13560-970 SP, Brazil

A simple estimate of the computational complexity of this task is to imagine a real-space representation of Ψ on a mesh, in which each coordinate is discretized by using 20 mesh points (which is not very much). For N electrons, Ψ becomes a function of $3N$ coordinates (ignoring spin, and taking Ψ to be real), and 20^{3N} values are required to describe Ψ on the mesh. The density $n(\mathbf{r})$ is a function of three coordinates, and requires 20^3 values on the same mesh. CI and the Kohn-Sham formulation of DFT additionally employ sets of single-particle orbitals. N such orbitals, used to build the density, require 20^{3N} values on the same mesh. (A CI calculation employs also unoccupied orbitals, and requires more values.) For $N = 10$ electrons, the many-body wave function thus requires $20^{30}/20^3 \approx 10^{35}$ times more storage space than the density, and $20^{30}/(10 \times 20^3) \approx 10^{34}$ times more than sets of single-particle orbitals. Clever use of symmetries can reduce these ratios, but the full many-body wave function remains unaccessible for real systems with more than a few electrons.
DFT is Based on the Exact Hohenberg-Kohn Theorem

1. The nondegenerate ground-state (GS) wave function is a unique functional of the GS density:

$$\Psi_0(r_1, r_2, \ldots, r_N) = \Psi[n_0(r)]$$

2. The GS energy, as the most important observable, has variational property:

$$E_{v,0} = E_v[n_0] = \langle \Psi[n_0]|\hat{H}|\Psi[n_0]\rangle \quad E_v[n_0] \leq E_v[n']$$

3. Kinetic energy and electron-electron interaction energy are universal (system independent) functionals of electron density:

while non-universal potential energy in external field is obtained from:

$$V[n] = \int d^3r \ n(r)v(r)$$

4. If external potential $v(r)$ is not held fixed, the functional $V[n]$ becomes universal: the GS density determines not only the GS wave function Ψ_0, but, up to an additive constant, also the potential $V[n_0]$. CONSEQUENCE:

$$E_0 = E[n_0] = \langle \Psi[n_0]|\hat{T} + \hat{U} + \hat{V}[n_0]|\Psi[n_0]\rangle \quad \Psi_k(r_1, r_2, \ldots, r_N) = \Psi_k[n_0]$$
Two Step Formal Construction of the Energy Density Functional

\[E[n] = \min \left\{ \langle \Psi | \hat{H} | \Psi \rangle \bigg| \sum_{i=1}^{N} \delta(r - r_i) | \Psi \rangle = n(r) \right\} \]

\[E_0 = \min_n E[n] \]

While this construction proves the Hohenberg-Kohn theorem, we did not actually gain anything: to obtain the functional \(E[n] \) we have to calculate the expectation value \(\langle \Psi | \hat{H} | \Psi \rangle \) for complicated many-body wave functions \(\Psi(r_1 \sigma_1, \ldots, r_N \sigma_N) \).
Functionals and Functional Derivatives

- **Function vs. Functional:**
 \[x \mapsto f(x) \]
 function maps number to a number

 \[n(r) \mapsto F[n] \]
 functional maps whole function to a number; example:

 \[F[n(r)] \text{ is the same as } F[n(r')] \]

- **Standard Derivative vs. Functional Derivative:**

 \[f(x + dx) = f(x) + \frac{df}{dx} dx + O(dx^2) \]

 \[F[f(x) + \delta f(x)] = F[f(x)] + \int dx \frac{\delta F[f]}{\delta f(x)} \delta f(x) + O(\delta f^2) \]

- **Useful formula:**

 \[F[n] = \int f(n, n', n'', n''', \ldots; x) dx \Rightarrow \frac{\delta F[n]}{\delta n(x)} = \frac{\partial f}{\partial n} - \frac{d}{dx} \frac{\partial f}{\partial n'} + \frac{d^2}{dx^2} \frac{\partial f}{\partial n''} - \frac{d^3}{dx^3} \frac{\partial f}{\partial n'''} + \ldots \]

 Example from classical mechanics:

 \[A[q] = \int L(q, \dot{q}; t) dt \Rightarrow 0 = \frac{\delta A[q]}{\delta q(t)} = \frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \]
Practical DFT: Kohn-Sham Equations

- Only the ionic (external for electrons) and the Hartree (i.e., classical Coulomb) potential energy can be expressed easily through the electron density:

$$E_{\text{ion}}[n] = \int d^3r \, V_{\text{ion}}(r) \, n(r)$$

$$E_{\text{Hartree}}[n] = \frac{1}{2} \int d^3r' \int d^3r \, V_{\text{ee}}(r-r') \, n(r')n(r)$$

- Using the kinetic energy functional, all of the difficulty of electron-electron interactions is absorbed into the exchange-correlation term:

$$E[n] = E_{\text{kin}}[n] + E_{\text{ion}}[n] + E_{\text{Hartree}}[n] + E_{\text{xc}}[n]$$

- To calculate the ground-state energy and density, we have to minimize:

$$\frac{\delta}{\delta n(r)} \left\{ E[n] - \lambda \left(\int d^3r \rho(r) - N \right) \right\} = 0 \Rightarrow \frac{\delta}{\delta \varphi_i(r)} \left\{ E[n] - \varepsilon_i \left[\int d^3r |\varphi_i(r)|^2 \right] - 1 \right\} = 0$$

$$n(r) = \sum_{i=1}^{N} |\varphi_i(r)|^2$$

$$\left[-\frac{\hbar^2}{2m_e} \Delta + V_{\text{ion}}(r) + \int d^3r' \, V_{\text{ee}}(r-r')n(r') + \frac{\delta E_{\text{xc}}[n]}{\delta n(r)} \right] \varphi_i(r) = \varepsilon_i \varphi_i(r)$$
The one-particle Kohn–Sham equations, in principle, only serve the purpose of minimizing the DFT energy, and have no physical meaning.

If we knew the exact $E_{xc}[n]$, which is non-local in $n(r)$, we would obtain the exact ground state energy and density. In practice, one has to make approximations to $E_{xc}[n]$ such as the LDA:

$$E_{xc}^{\text{LDA}}[n(r)] \approx \int d^3 r \ E_{xc}^{\text{LDA}}(n(r))$$

NOTE: The kinetic energy in KS equations is that of independent (uncorrelated) electrons. The true kinetic energy functional for the many-body problem is different. We hence have to add the difference between the true kinetic energy functional for the many-body problem and the above uncorrelated kinetic energy to E_{xc}, so that all many-body difficulties are buried in E_{xc}.

$E_{\text{LDA}}[n(r)]$ is typically calculated from the perturbative solution or the numerical simulation of the jellium model which is defined by $V_{\text{ion}}(r) = \text{const}$. Owing to translational symmetry, the jellium model has a constant electron density $n(r) = n_0$. Hence, with the correct jellium $E_{xc}^{\text{LDA}}[n(r)]$, we could calculate the energy of any material with a constant electron density exactly. However, for real materials $n(r)$ is varying, less so for s and p valence electrons but strongly for d and f electrons.

$$E_{\text{kin}}[n_{\text{min}}] = - \sum_{i=1}^{N} \langle \phi_i | \hbar^2 \Delta / (2m_e) | \phi_i \rangle$$
Kohn-Sham "Quasiparticles" Dragging Exchange-Correlation Hole

Wave function of two non-interacting electrons

$$\Psi_{ij} = \frac{1}{\sqrt{2V}} \left(e^{i\mathbf{k}_i \cdot \mathbf{r}_i} e^{i\mathbf{k}_j \cdot \mathbf{r}_j} - e^{i\mathbf{k}_i \cdot \mathbf{r}_j} e^{i\mathbf{k}_j \cdot \mathbf{r}_i} \right) = \frac{1}{\sqrt{2V}} e^{i(\mathbf{k}_i \cdot \mathbf{r}_i + \mathbf{k}_j \cdot \mathbf{r}_j)} \left(1 - e^{-i(\mathbf{k}_i - \mathbf{k}_j) \cdot (\mathbf{r}_i - \mathbf{r}_j)} \right)$$

Probability to find electron i in some small volume $\mathrm{d}r_i$ while electron j is in some small volume $\mathrm{d}r_j$

$$P(r_{\uparrow\uparrow}) \mathrm{d}r = n_{\uparrow} [1 - \cos(\mathbf{k}_i - \mathbf{k}_j) \cdot (\mathbf{r}_i - \mathbf{r}_j)] \mathrm{d}r_i \mathrm{d}r_j$$

Effective charge density seen by an electron of a given spin orientation in a non-interacting electron gas

$$n_{\text{eff}}(\mathbf{r}) = en/2 + n_{\text{ex}}(\mathbf{r}) = en \left[1 - \frac{9}{2} \frac{(\sin k_F r - k_F r \cos k_F r)^2}{(k_F r)^6} \right]$$

Spin-resolved pair-distribution functions in an electron gas: A scattering approach based on consistent potentials

PHYSICAL REVIEW B 69, 233105 (2004)

1. Naoyi, R. Díez-Muño, T. I. Imariti, and D. M. Efetov

Quantum Monte Carlo Analysis of Exchange and Correlation in the Strongly Inhomogeneous Electron Gas

PHYS824: Nanophysics and Nanotechnology

Introduction to DFT
If we knew the DFT functional for one material, we could treat all materials by simply adding ionic potential which is typically approximated by pseudopotentials.

Figure 2.4: Electron densities $n(r)$ as a function of the radial distance from the nucleus r in angstroms, for four elements of column IV of the Periodic Table: C ($Z = 6, [1s^2]2s^22p^2$), Si ($Z = 14, [1s^2]2s^22p^2[3s^23p^2]$), Ge ($Z = 32, [1s^2]2s^22p^63s^23p^63d^{10}4s^24p^2$) and Pb ($Z = 82, [1s^2]2s^22p^63s^23p^63d^{10}4s^24p^65s^24f^{14}5d^{10}6s^25p^6$); the core states are given inside square brackets. In each case, the dashed line with the shaded area underneath it represents the density of core electrons, while the solid line represents the density of valence electrons and the total density of electrons (core plus valence). The core electron density for C is confined approximately below 1.0 Å, for Si below 1.5 Å, for Ge below 2.0 Å, and for Pb below 2.5 Å. In all cases the valence electron density extends well beyond the range of the core electron density and is relatively small within the core. The wiggles that develop in the valence electron densities for Si, Ge and Pb are due to the nodes of the corresponding wavefunctions, which acquire oscillations in order to become orthogonal to core states.

Solve $H\phi^{(0)}(r) = [\hat{H} + V^{\text{Coul}}(r)]\phi^{(0)}(r) = \epsilon^{(0)}\phi^{(0)}(r)$

Fix pseudo-wavefunction $\phi^{(0)}(r) = \phi^{(0)}(r)$ for $r \geq r_c$

Construct $\phi^{(0)}(r)$ for $0 \leq r < r_c$, under the following conditions:

- $\phi^{(0)}(r)$ smooth, nodeless; $d\phi^{(0)}/dr$, $d^2\phi^{(0)}/dr^2$ continuous at r_c

Normalize pseudo-wavefunction $\phi^{(0)}(r)$ for $0 \leq r < \infty$

Invert $[\hat{H} + V^{\text{P3}}(r)]\phi^{(0)}(r) = \epsilon^{(0)}\phi^{(0)}(r)$

$V^{\text{P3}}(r) = \epsilon^{(0)} - [\hat{H}\phi^{(0)}(r)]/\phi^{(0)}(r)$
Solving Kohn-Sham Equations via Self-Consistent Loop: Computational Codes

\[n_0(r) \]

\[v_{KS}(r) \]

\[\hat{H}_{KS}\varphi_i(r) = \varepsilon_i\varphi_i(r) \]

\[n(r) = \sum_i |\varphi_i(r)|^2 \]

converged?

no

yes

end

www.flapw.de

www.abinit.org

PHYS824: Nanophysics and Nanotechnology

Introduction to DFT
Two non-interacting fake electrons (doubly occupying 1s orbital) sitting in this potential have precisely the same density as the interacting electrons in He atom. If we can figure out some way to approximate this potential accurately, we have a much less demanding set of equations to solve than those of the true system.

LDA greatly improves on Hartree-Fock, but it typically overbinds by about 1 eV, which is too inaccurate for quantum chemistry, but sufficient for many solid-state calculations.
Beyond DFT: GW and DFT+GW for Weakly-Correlated Systems

\[\hat{H}_0 \phi_n^{QP}(r) + \int dr' \hat{\Sigma}(r, r'; E_n^{QP}) \phi_n^{QP}(r') = E_n^{QP} \phi_n^{QP}(r) \]

\[\hat{\Sigma}(r, r'; \omega) = \frac{i}{4\pi} \int_{-\infty}^{\infty} e^{i\omega'\delta} G(r, r'; \omega + \omega') W(r, r', \omega') d\omega' \]

\[E_n^{QP} \approx \varepsilon_n^{KS} + \langle \phi_n | \Sigma(\varepsilon_n^{KS}) - v_{xc} - \Delta \mu | \phi_n \rangle \]

In many cases there is an almost complete overlap between the QP and the KS wavefunctions, and the full resolution of the QP equation may be circumvented by computing the quasiparticle energy using a first-order perturbation of the KS energy.

The total quasiparticle Hamiltonian is non-Hermitian!
Using moderate energy, ARPES can observe electronic states that are buried deep below the surface if only an evanescent tail of the wave function is present within the mean free path of the photoelectrons.
DFT+GW Fitted with Slater-Koster TBH Using p_z, d_{yz}, d_{zx} Orbitals per C Atom

Accurate six-band nearest-neighbor tight-binding model for the π-bands of bulk graphene and graphene nanoribbons

Timothy B. Boykin,²,³ Mathieu Luisier,² Gerhard Klimeck,² Xueping Jiang,³ Neerav Kharche,³ Yu Zhou,³ and Saroj K. Nayak³

Slater-Koster hopping parameters (in eV)

<table>
<thead>
<tr>
<th></th>
<th>C-C</th>
<th>H-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_p (C)$</td>
<td>1.2057</td>
<td>$E_p (H)$</td>
</tr>
<tr>
<td>$E_d (C)$</td>
<td>24.1657</td>
<td>$E_d (H)$</td>
</tr>
<tr>
<td>$pp\pi$</td>
<td>-3.2600</td>
<td>$pp\pi$</td>
</tr>
<tr>
<td>$pd\pi$</td>
<td>2.4000</td>
<td>$pd\pi$</td>
</tr>
<tr>
<td>$dd\pi$</td>
<td>3.6000</td>
<td>$dd\pi$</td>
</tr>
<tr>
<td>$d\delta$</td>
<td>-7.4000</td>
<td>$d\delta$</td>
</tr>
</tbody>
</table>

PHYS824: Nanophysics and Nanotechnology

Introduction to DFT
Alternative Ab Initio TBH for Graphene with Single p_z Orbital per C Atom and 3NN Hoppings

PHYSICAL REVIEW B 66, 035412 (2002)

Tight-binding description of graphene

S. Reich, J. Maultzsch, and C. Thomsen
Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

P. Ordejón
Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la U.A.B. E-08193 Bellaterra, Barcelona, Spain

FIG. 3. (a) Top: first-principles band structure with a single-ζ basis set and $r_c = 1.18$ Å. The nearest-neighbor tight-binding band structure [Eq. (6)] with $\gamma_0 = -1.86$ eV and $s_0 = 0.02$ coincides with the first-principles result. Bottom: difference ΔE between the first-principles and nearest-neighbor tight-binding band structures. (b) Top, full lines: first-principles result with a single-ζ basis set and $r_c = 1.86$ Å; dotted lines: nearest-neighbor tight-binding band structure [Eq. (6)] with $\gamma_0 = -2.84$ eV and $s_0 = 0.070$; the third-nearest-neighbor tight-binding band structure coincides with the first-principles result shown by the full lines ($\epsilon_{2p} = -0.36$ eV, $\gamma_0 = -2.78$ eV, $\gamma_1 = -0.12$ eV, $\gamma_2 = -0.068$ eV, $s_0 = 0.106$, $s_1 = 0.001$, and $s_2 = 0.003$). Bottom, dotted line: difference between the first-principles and the nearest-neighbor tight-binding band structure shown in the top panel. For the third-nearest neighbor tight-binding approximation the differences are not seen on the chosen energy scale. (c) Top: converged ab initio (full lines) and third-neighbor tight-binding (dashed) band structures; see Table I for the tight-binding parameters ($M\Gamma\bar{K}M$). Bottom: difference between the two band structures above.

PHYS824: Nanophysics and Nanotechnology

Introduction to DFT
DFT fitted with Slater-Koster Tight-Binding Hamiltonian for Monolayer MoS$_2$

A tight-binding model for MoS$_2$ monolayers

E Ridolfi1, D Lee2, T S Rahman3, E R Mucciolo3 and C H Lewenkopf3

1 Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
2 Department of Physics, University of Central Florida, Orlando, FL 32816-2385, USA
E-mail: emilia.ridolfi@gmail.com, mucciolo@physics.ucf.edu and cito@if.uff.br

Received 2 July 2015, revised 16 July 2015
Accepted for publication 22 July 2015
Published 24 August 2015

Abstract

We propose an accurate tight-binding parametrization for the band structure of MoS$_2$ monolayers near the main energy gap. We introduce a generic and straightforward derivation for the band energies equations that could be employed for other monolayer dichalcogenides. A parametrization that includes spin–orbit coupling is also provided. The proposed set of model parameters reproduce both the correct orbital compositions and location of valence and conduction band in comparison with ab $initio$ calculations. The model gives a suitable starting point for realistic large-scale atomic electronic transport calculations.

Keywords: MoS$_2$, band structure, tight-binding model, transition metal dichalcogenides

Table 8. Tight-binding model parameters obtained by optimization using $\alpha = 3.16$ Å, $\beta_0 = 0.710$, and $d = 2.406$ Å.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CB–VB optimization (eV)</th>
<th>VB optimization (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_0</td>
<td>0.201</td>
<td>0.191</td>
</tr>
<tr>
<td>D_1</td>
<td>-1.563</td>
<td>-1.599</td>
</tr>
<tr>
<td>D_2</td>
<td>-0.352</td>
<td>0.081</td>
</tr>
<tr>
<td>D_3</td>
<td>-54.839</td>
<td>-48.934</td>
</tr>
<tr>
<td>D_4</td>
<td>-39.275</td>
<td>-37.981</td>
</tr>
<tr>
<td>V_{dir}</td>
<td>4.196</td>
<td>4.115</td>
</tr>
<tr>
<td>V_{ddir}</td>
<td>-9.880</td>
<td>-8.963</td>
</tr>
<tr>
<td>V_{pp}</td>
<td>12.734</td>
<td>10.707</td>
</tr>
<tr>
<td>$V_{\text{pp'}}$</td>
<td>-2.175</td>
<td>-4.084</td>
</tr>
<tr>
<td>V_{ddir}</td>
<td>-1.153</td>
<td>-1.154</td>
</tr>
<tr>
<td>V_{dir}</td>
<td>0.612</td>
<td>0.964</td>
</tr>
<tr>
<td>V_{d}</td>
<td>0.086</td>
<td>0.117</td>
</tr>
</tbody>
</table>

Note: The second column gives the best parameter set we obtain to fit both the valence (VB) and the conduction (CB) bands, while the third column focuses the optimization on the valence band.

Figure 1. Scheme of the hopping amplitudes. Solid black circles represent Mo atoms, while empty circles represent S atoms at the top and bottom layers.

Figure 5. Comparison between the band structures obtained with the DFT-HSE06 (blue squares) and with the optimized tight-binding model using the parameters from the CB–VB optimization (red circles) near the gap region.
Trouble with Simplistic Hamiltonians of Van der Waals Heterostructures

\[\mathbf{v}_k = \frac{1}{\hbar} \frac{\partial \epsilon_k}{\partial \mathbf{k}} + \frac{d\mathbf{k}}{dt} \times \Omega_k \Rightarrow \sigma_{xy}^{K,K'} = \frac{e^2}{\pi \hbar} \int d^2k f(\epsilon_k) \Omega_k \Rightarrow \sigma_{xy}^v = \sigma_{xy}^K - \sigma_{xy}^{K'} = \frac{2e^2}{\hbar} \]

Science 346, 448 (2014)

Nat. Commun. 8, 14552 (2017)

PRB 79, 035304 (2009)

PHYS824: Nanophysics and Nanotechnology

Introduction to DFT
Resolution of the Trouble using Ab Initio Tight-Binding Hamiltonians

Edge currents for TBH

Isolated graphene wire with zigzag edges

Graphene-on-hBN wire with zigzag edges

$\nu_A = 0.3667$ eV
$\nu_B = 0.3667$ eV
$\delta = 0.06262$ eV
$t_1 = 2.6672$ eV
$t_2 = 0.2083$ eV
$t_3 = 0.2000$ eV
$t_4 = 0.1800$ eV
$t_{AA} = 0.0416$ eV
$t_{AB} = 0.0416$ eV

$\nu_A = 0.3495$ eV
$\nu_B = 0.352$ eV
$\delta = 0.0835$ eV
$t_1 = 2.6672$ eV
$t_2 = 0.2083$ eV
$t_3 = 0.2000$ eV
$t_4 = 0.1800$ eV
$t_{AA} = 0.0416$ eV
$t_{AB} = 0.0428$ eV
Ab Initio TBH using Maximally Localized Wannier Functions (MLWF)

MLWF: Faithfully retain the overlap matrix elements and their phases, the orbital character of the bands and the accuracy of the original DFT calculations, but at the computational cost of TBH methodology.

- Wannier TBH vs. fitted Slater-Koster TBH

WF
\[w_n(r) = \frac{V}{(2\pi)^3} \int_{BZ} d^3k \Psi_n(k) e^{-i\mathbf{k} \cdot \mathbf{R}} \]

Bloch state
\[\psi_n(r) = \frac{V}{(2\pi)^3} \int_{BZ} d^3k \sum_m U_{mn} \Psi_m(k) e^{-i\mathbf{k} \cdot \mathbf{R}} \]

multiband generalized WF (localization in \(\mathbf{R} \) gives Bloch smoothness in \(\mathbf{k} \))

Amplitude isosurface contours of MLWF for graphene is split into the dominant \(p_z \) component with \(m = 0 \) angular momentum, plus two additional components with \(m = 3 \) and \(m = 6 \) angular momentum (which is defined up to module 3 due to restoration of threefold rotation symmetry at the position of C atom) whose radius increases with \(m \).

RMP 84, 1419 (2012)

arXiv:1508.07735

FIG. 6: Instability of fitting with many parameters. 5000 fits of an 8_t tight-binding model to the band structure of TMTTF_2AsF_6 produced in [7]. Each line is a set of parameters resulting from one run of the fitting algorithm. The best fit parameters are shown in red. They are inconsistent with the parameters found from Wannier orbital overlaps (given in green). Only 1.5% of the runs found the minimal value of the objective function. The histogram shows the sets of minimization function values produced in the 5000 runs. Less than 6% of runs are in the “best” segment of the histogram, and 1/4 in the best two segments.
The success of LDA shows that this treatment is actually sufficient for many materials, both for calculating ground state energies and band structures, implying that electronic correlations are rather weak in these materials. But, there are important classes of materials where LDA fails, such as transition metal oxides or heavy fermion systems. In these materials the valence orbitals are the 3d and 4f orbitals. For two electrons in these orbitals the distance is particularly short, and electronic correlations particularly strong.

Many such transition metal oxides are Mott insulators, where the on-(lattice-)site Coulomb repulsion U splits the LDA bands into two sets of Hubbard bands. One can envisage the lower Hubbard band as consisting of all states with one electron on every lattice site and the upper Hubbard band as those states where two electrons are on the same lattice site. Since it costs an energy U to have two electrons on the same lattice sites, the latter states are completely empty and the former completely filled with a gap of size U in-between. Other transition metal oxides and heavy fermion systems are strongly correlated metals, with heavy quasiparticles at the Fermi energy, described by an effective mass or inverse weight $m/m_0 \approx 1/Z \gg 1$.

Beyond DFT: Coulomb Blockade in Nanostructures

FIG. 1 (a) Schematic illustration of a confined region (dot) which is weakly coupled by tunnel barriers to two leads. (b) Because the charge \(Q = -Ne \) on the dot can only change by multiples of the elementary charge \(e \), a charge imbalance \(Q + C\phi_{\text{ext}} \) arises between the dot and the leads. This charge imbalance oscillates in a saw-tooth pattern as the electrostatic potential \(\phi_{\text{ext}} \) is varied (\(\phi_{\text{ext}} \) is proportional to the gate voltage). (c) Tunneling is possible only near the charge-degeneracy points of the saw-tooth, so that the conductance \(G \) exhibits oscillations. These are the “Coulomb-blockade oscillations”.

PHYS824: Nanophysics and Nanotechnology
A bird's-eye view of density-functional theory

Klaus Capsel

This paper is the output of lecture notes given at the Physics Institute and the Chemistry Institute of the University of Sao Paulo at Sao Carlos, Brazil, and at the 9th Forum on Electronic Structure of the Brazilian Physical Society. It is an attempt to introduce density-functional theory (DFT) in a language accessible for students entering the field or researchers from other fields. It is not meant to be a scholarly review of DFT, but rather an informal guide to its conceptual basis and some recent developments and advances. The Hohenberg-Kohn theorems and the Kohn-Sham equations are discussed in some detail. Approximate density functionals, selected aspects of applications of DFT, and a variety of extensions of standard DFT are also discussed, albeit in less detail. Throughout it is attempted to provide a balanced treatment of aspects that are relevant for chemistry and aspects relevant for physics, but with a strong bias towards conceptual foundations. The paper is intended to be read before (or in parallel with) one of the many excellent, more technical reviews available in the literature.

Electronic structure calculations using dynamical mean field theory

K. Held

Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany

(Received 29 November 2006; in final form 9 August 2007)

The calculation of the electronic properties of materials is an important task of solid-state theory, albeit particularly difficult if electronic correlations are strong, e.g., in transition metals, their oxides and in f-electron systems. The standard approach to material calculations, the density functional theory in its local density approximation (LDA), incorporates electronic correlations only very rudimentarily and fails if the correlations are strong. Encouraged by the success of dynamical mean field theory (DMFT) in dealing with strongly correlated model Hamiltonians, physicists from the bandstructure and the many-body communities have joined forces and developed a combined LDA + DMFT method recently. Depending on the strength of electronic correlations, this new approach yields a weakly correlated metal or a Mott insulator. This approach is widely regarded as a breakthrough for electronic structure calculations of strongly correlated materials. We review this LDA + DMFT method and also discuss alternative approaches to employ DMFT in electronic structure calculations, e.g., by replacing the LDA part with the so-called GW approximation. Different methods to solve the DMFT equations are introduced with a focus on those that are suitable for realistic calculations with many orbitals. An overview of the successful application of LDA + DMFT to a wide variety of materials, ranging from Pu and Ce, to Fe and Ni, to numerous transition metal oxides, is given.