From Bloch to

Maximally Localized Wannier Functions

Q Bloch functions depend on crystal momentum and describe particle which is spread out over the whole
lattice — an alternative basis is provided by maximally localized Wannier functions

W (X—X) = \/7 j dke g™ (x)

k(”) (X) — @'?(d n)¢(n) (X) not uniquely defined

| W (X) |~ e—hnX for each band there exists only one real maximally localized Wannier
n function which is either symmetric or antisymmetric about x=0 or x=a/2
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Figure 2.3. Wannier Functions wy(x) in units \/27/a for n = 0 (left)
and n =1 (right), plotted for Vi = 10Eg (solid line) and Vi = 5E; (dashed
line). The lower plots show the absolute version of the Wannier functions on

a logarithmic scale. The position of the periodic potential is indicated on the

upper plots.
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