From Bloch to Maximally Localized Wannier Functions

 \Box Bloch functions depend on crystal momentum and describe particle which is spread out over the whole lattice \rightarrow an alternative basis is provided by maximally localized Wannier functions

$$w_n(x - x_i) = \sqrt{\frac{a}{2\pi} \int_{BZ} dk e^{-ikx} \phi_k^{(n)}(x)}$$

$$\phi_k^{(n)}(x) \mapsto e^{i\theta(q,n)} \phi_k^{(n)}(x) \text{ not uniquely defined}$$

 $|W_n(x)| \sim e^{-h_n x}$ for each band there exists only one real maximally localized Wannier function which is either symmetric or antisymmetric about x=0 or x=a/2

Figure 2.3. Wannier Functions $w_n(x)$ in units $\sqrt{2\pi/a}$ for n = 0 (left) and n = 1 (right), plotted for $V_0 = 10E_R$ (solid line) and $V_0 = 5E_R$ (dashed line). The lower plots show the absolute version of the Wannier functions on a logarithmic scale. The position of the periodic potential is indicated on the upper plots.

Bose-Hubbard Model