What is Nanophysics: Survey of Course Topics

Branislav K. Nikolić

Department of Physics & Astronomy, University of Delaware, Newark, DE 19716, U.S.A.

https://wiki.physics.udel.edu/qttg

PHYS824: Nanophysics & Nanotechnology

Definition of Nanophysical Systems

Definition: Any condensed matter systems whose at least one (out of three) dimension is of the order of **nanometer** can be considered as nanoscale system

Nanoscience and nanotechnology are all about relating and exploiting phenomena for materials having one, two or three dimensions reduced to the nanoscale. Their evolution may be traced to three exciting happenings that took place in a short span from the early to mid-1980s with the award of Nobel prizes to each of them. These were: (i) the discovery quantum Hall effect in a two-dimensional electron gas; (ii) the invention of scanning tunnelling microscopy (STM); and (iii) the discovery of fullerene as the new form of carbon. The latter two, within a few years, further led to the remarkable invention of the atomic force microscope (AFM) and, in the early 1990s the extraordinary discovery of carbon nanotubes (CNT), which soon provided the launch pad for the present-day nanotechnology. The STM and AFM have emerged as the most powerful tools to examine, control and manipulate matter at the atomic, molecular and macromolecular scales and these functionalities constitute the mainstay of nanotechnology. Interestingly, this exciting possibility of nanolevel tailoring of materials was envisioned way back in 1959 by Richard Feynman in lecture entitled "There's plenty of room at the bottom."

PHYS824: Nanophysics & Nanotechnology

W. Pauli: "God made solids, but surfaces were the work of Devil."

PHYS824: Nanophysics & Nanotechnology

What is nanophysics?

Two-Dimensional Materials Beyond Graphene and their van der Waals Heterostructures

REVIEW

APPLIED PHYSICS

2D materials and van der Waals heterostructures

K. S. Novoselov,^{1,2}* A. Mishchenko,^{1,2} A. Carvalho,³ A. H. Castro Neto³* **PERSPECTIVE**

doi:10.1038/nature1238

Van der Waals heterostructures

A. K. Geim^{1,2} & I. V. Grigorieva¹

van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional materials as building blocks held together by the van der Waals forces between the layers

What is nanophysics?

PHYS824: Nanophysics & Nanotechnology

Two-Dimensional Magnetic Materials

PHYS824: Nanophysics & Nanotechnology

Experimental Tools of Nanophysics: STM and AFM

PHYS824: Nanophysics & Nanotechnology

Examples of STM Images

Fe on Cu(111)

IBM Almaden PHY5824: Nanophysics & Nanotechnology

LETTERS

PUBLISHED ONLINE: 30 AUGUST 2009 | DOI: 10.1038/ NPHYS1365

nature physics

Origin of spatial charge inhomogeneity in graphene

Yuanbo Zhang^{1+ \dagger}, Victor W. Brar^{1,2+}, Caglar Girit^{1,2}, Alex Zettl^{1,2} and Michael F. Crommie^{1,2 \dagger}

Examples of AFM Images

<u>Science</u> **319**, 1229 (2008): Graphene Nanoribbons with ultrasmooth edges

Kouwenhoven Lab: Double quantum dot integrated with quantum point contacts on both sides as a spin-based qubit

PHYS824: Nanophysics & Nanotechnology

Physical Meaning of Dirac Materials and Topological Protection Revealed by STM

PHY5824: Nanophysics & Nanotechnology

What is nanophysics?

Nanoscale Imaging of 2D Magnets: SP-STM and MFM plus SQUID (SSM) and scanning NV center microscopy (SNVM)

constant current image of Co atoms on Mn/W(110)

PHYS824: Nanophysics & Nanotechnology

Science 364, 973 (2019)

Magnetic Field Sources

What is nanophysics?

20

0

-20

Why are Nanostructures Interesting for Basic Research on Weakly Interacting Electrons?

Enhanced role of surface atoms with unpaired spins and uncompensated bonds
Reduced dimensionality at the nanoscale = strongly modified density of states, enhanced Coulomb interaction, ...

Fermi velocity

equilibrium branch of the course

Quantum confinement effects = discrete' energy levels, and modified DOS subbands nonequilibrium branchlof the course
Quantum interference effects in
transport = quantum transport

Fermi velocity $\lambda = mean-free path$ $Drift velocity, < V_F$ $P_{cl} = P_1 + P_2 \text{ vs. } P_{qm} = |A_1 + A_2|^2$ $P_{qm} = P_1 + P_2 + 2\sqrt{P_1P_2} \cos \phi$

What is nanophysics?

Ε

PHYS824: Nanophysics & Nanotechnology

Why are Nanostructures Interesting for Basic Research on Strongly Interacting Electrons?

LETTER

Controlling many-body states by the electric-field effect in a two-dimensional material

doi:10.1038/nature16171

ARTICLE

Unconventional superconductivity in magic-angle graphene superlattices

'uan Cao¹, Valla Fatemi¹, Shiang Fang², Kenji Watanabe³, Takashi Taniguchi³, Efthimios Kaxiras^{2,4} & Pablo Jarillo-Herrer

Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

Yuan Cao¹, Valla Fatemi¹, Ahmet Demir⁴, Shiang Fang², Spencer L. Tomarken¹, Jason Y. Luo¹, Javier D. Sanchez-Yamagishi², Kenii Watanabe¹, Takashi Taniguchi², Efthimitos Kaxiras^{3,4}, Ray C. Ashoori¹ & Pablo Jarillo-Herrero¹

doi:10.1038/nata

What is nanophysics?

PHYS824: Nanophysics & Nanotechnology

Example: Conductance Quantization

PHYS824: Nanophysics & Nanotechnology

Example: Resistance Quantization in Quantum Hall Effect and Topologically-Protected Edge Currents

PHYS824: Nanophysics & Nanotechnology

Classical and Quantum Hall Trio

Quantum spin Hall

What is nanophysics?

Quantum anomalous Hall

Quantum

PHYS824: Nanophysics & Nanotechnology

Quantum Hall

Example: Nonlocal Resistance in Multiterminal Graphene-Based van der Waals Heterostructures

Direct and inverse spin Hall effect

theory: PRL 117, 176602 (2016)

Direct and inverse valley Hall effect in graphene/hBN

PHYS824: Nanophysics & Nanotechnology

Example: Quantum Pumping of Charge and Spin

PHYS824: Nanophysics & Nanotechnology

Example: Good and Bad Consequences of Quantum Tunneling for Electronics and Spintronics

PHYS824: Nanophysics & Nanotechnology

Limits of Top-Down Approach in Conventional Electronics

PHYS824: Nanophysics & Nanotechnology

Fundamental Quantum Effects at the Nanoscale Act Against Moore's Law for Conventional FETs

PHYS824: Nanophysics & Nanotechnology

Nanotechnology: Molecular Electronics via Bottom-Up Approach

Avouris Lab, IBM

van der Zant Lab, Delft (Nano Lett. 2011)

PHYS824: Nanophysics & Nanotechnology

Nanotechnology : Nanoelectronics with GNRs and CNTs

PHYS824: Nanophysics & Nanotechnology

Tube Unzipping

Nanotechnology: Spintronics and Optospintronics

PHYS824: Nanophysics & Nanotechnology

Nanotechnology: Nanoscale Thermoelectrics

PHYS824: Nanophysics & Nanotechnology

Nanotechnology: Nano-Bio Interface

nature nanotechnology

FOCUS | REVIEW ARTICLE PUBLISHED ONLINE: 3 FEBRUARY 2016 | DOI: 10.1038/NNANO.2015.307

Graphene nanodevices for DNA sequencing

Stephanie J. Heerema and Cees Dekker*

What is nanophysics?

PHYS824: Nanophysics & Nanotechnology

Branches of Nanophysics & Nanotechnology

Introduction to

Graphene-Based Nanomaterials

From Electronic Structure to Quantum Transport Luis E. F. Foa Torres, Stephan Roche

and Jean-Christophe Charlier

SECOND EDITION

Nanomagnetism and Spintronics

Edited by Teruya Shinjo

Basic Concepts and Physical Properties

Edited by Sergey P. Gubin (BWILEY-VCH

Magnetic Nanoparticles

Nanofluidics

RSCPublishing

Naminalience and Nanotechnology

What is nanophysics?

PHYS824: Nanophysics & Nanotechnology