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1.3 Scattering matrix and Landauer formula

In two previous Sections, we studied electron transport in idealized

waveguides with or without potential barrier. They do not only illustrate

concepts of quantum transport, they also model concrete experimental

situations. A waveguide with no potential barrier models a QPC, a con-

striction created by gates in 2DEG. A waveguide with potential barrier

models electron propagation through an insulating layer between two

metals.

Real nanostructures can be made in a variety of ways, and can be

more complicated. Modern fabrication technology allows for making

sophisticated semiconductor heterostructures, combining and shaping

different metals, using nanotubes, molecules and even single atoms as

elements of an electron transport circuit. Various means can be used to

control the transport properties of a fabricated nanostructure. It is only

possible to describe all this in a single book because all these systems do

obey the general laws of quantum transport that we formulate in this

Section.
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Fig. 1.12. Nanostructures of an identical design are never identical.

There is a common feature of all fabrication methods: Two nanos-

tructures that are intended to be identical, that is, are made with the

same design and technology, are never identical. Beside the artificial

features brought by design, there is also disorder originating from de-

fects of different kind inevitably present in the structure. The position

of and/or potential created by such defect is random and in most cases

can be neither controlled nor measured. It is unlikely that this situation

changes with further technological developments: Even if one achieves a

perfect control of every atom in a nanostructure, one would not be able

to control all the atoms in the macroscopic contact leads, those can not

be separated from the nanostructure. The defects scatter electrons thus

affecting the transport properties. Conductance of the structure is thus
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random depending on a specific realization of disorder in the structure

and in the leads: Formidal number of uncontrollable parameters.

Fortunately, transport properties of any nanostructure can be ex-

pressed through a smaller set of parameters. The condition for this

is that electrons traverse the structure without elergy loss, so that they

experience only elastic scattering. These conditions for a given structure

are always achieved at sufficiently low temperature and voltage applied.

The scattering is characterized by a scattering matrix that contains in-

formation about electron wavefunctions far from the structure. The

transport is described by a set of transmission eigenvalues derived from

this scattering matrix. A great deal of literature on quantum transport,

and a great deal of this book, is in fact devoted to evaluation of the

transmission eigenvalues and establishing their general properties. In

this Section, we derive the relation between conductance and transmis-

sion eigenvalues and thus demonstrate that understanding of transmis-

sion properties of a system authomatically means understanding of its

transport properties.

Scattering matrix. We have mentioned in Section 1.2 that any nanos-

tructure taking part in quantum transport is a part of an electric circuit:

It is connected to several reservoirs which are in thermal equilibrium and

are characterized by a fixed voltage. In this Section, we only consider

the case when there are two reservoirs (to be referred as left and right).

Generalization to many reservoirs is given in Section 1.5. Somewhere
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Fig. 1.13. Scattering approach to quantum transport. Ideal waveguides and
reservoirs brought from QPC plus scattering in between form an adequate
model of transport in any nanostructure.
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between the reservoirs there is scattering region – the nanostructure

proper. Let us start from the assumption that we use formulating a

model for QPC: Ideal waveguides connect the reservoirs and the scat-

tering region (Fig. 1.13). This is convenient since the scattering only

takes place in a finite region, the reservoirs being far from this region.

The wave functions may have very complicated form in the scattering

region, but in the waveguides they are always combinations of plane

waves. Left and right waveguides do not have to have the same axis

and the same cross-section. This is why it is convenient to introduce

the separate coordinates xL < 0, yL, zL and xR > 0, yR, zR for the left

and right waveguides, respectively. Generally, a wavefunction at fixed

energy E can be presented as a linear combination of the plane waves,

ψ(xL, yL, zL) =
∑

n

1√
2πh̄vn

Φn(yL, zL)
[

aLne
ik(n)

x xL + bLne
−ik(n)

x xL

]

,

(1.31)

and

ψ(xR, yR, zR) =
∑

m

1√
2πh̄vm

Φm(yR, zR)
[

aRme
−ik(m)

x xR + bRme
ik(m)

x xR

]

.

(1.32)

Here we label the transport channels in the left and right waveguides

by the indices n and m, respectively. The corresponding transverse

wavefunctions are Φn and Φm, and energies of the transverse motion

are En, Em. For any transport channel n or m, be it in the left or

in the right waveguide, the energy E fixes the value of the wavevector

k
(n)
x =

√

2m(E −En)/h̄. Transport is due to propagating, not evanes-

cent waves, and k
(n)
x has to be real. Then, only a finite number of open

channels, NL to the left and NR to the right, exists at a fixed energy

E. We explicitly wrote the square roots of velocities vn in each channel.

This is to assure that the current density does not contain these factors

and is expressed in terms of aLn, bLn or aRm, bRm only.

In Eqs. (1.31), (1.32) the coefficients aLn, aRm are the amplitudes of

the waves coming from the reservoirs, and bLn, bRm are the amplitudes

of the waves transmitted through or reflected back from the scattering

region. These coefficients are therefore not independent: The ampli-

tude of the wave reflected trom the obstacle linearly depends on the

amplitudes of incoming waves in all the channels,

bαl =
∑

β=L,R

∑

l′

sαl,βl′aβl′ , β = L,R, l = n,m. (1.33)
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The proportionality coefficients are combined into a (NL +NR)× (NL +

NR) scattering matrix ŝ. It has the following block structure,

ŝ =

(

ŝLL ŝLR

ŝRL ŝRR

)

≡
(

r̂ t̂′

t̂ r̂′

)

. (1.34)

The NL × NL reflection marix r̂ describes the reflection of the waves
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Fig. 1.14. Structure of two-terminal scattering matrix. We show reflection
and transmission amplitutes of the electron wave coming from the left in the
second transport channel, n = 2.

coming from the left. Thus, rnn′ is the amplitude of the following pro-

cess: The electron coming from the left in the transverse channel n′, is

reflected to the channel n. Consequently, |rnn′ |2 is the probability of

this process. The NR × NR reflection matrix r̂′ describe reflection of

particles coming from the right. Finally, NR ×NL transmission matrix

t̂ is responsible for the transmission through the scattering region. If

magnetic field B is applied, the elements of the scattering matrix obey

the following conditions, rnn′ (B) = rn′n(−B), r′mm′(B) = r′m′m(−B),

tmn(B) = t′nm(−B). In particular, without the magnetic field the trans-

mission matrix t̂′ in Eq. (1.34) is the transpose of the matrix t.

Any scattering matrix satisfies the unitarity condition, ŝ†ŝ = 1̂. The

diagonal element of ŝ†ŝ is
(

ŝ†ŝ
)

nn
=
∑

n′

|rnn′ |2 +
∑

m

|tmn|2 = 1, (1.35)

since it represents a total probability of an electron in the channel n to

be either reflected or transmitted, to any channel.

Landauer formula. We now turn to the calculation of current, with Eq.

(1.17) as the starting point. Let us calculate the current through a cross-

section located in the left waveguide. The electrons with kx > 0 orig-

inate from the left reservoir, and their filling factor is therefore fL(E).

Now, the electrons with kx < 0 in a given channel n are coming from
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the scattering region. A fraction of these electrons originate from the

left reservoir and are reflected; they carry the filling factor fL(E). This

fraction is determined by the probability to be reflected to the channel

n from all possible starting channels n′, Rn(E) =
∑

n′ |rnn′ |2. Other

electrons are transmitted through the scattering region, their filling fac-

tor being fR(E). The resulting filling factor for kx < 0 is therefore

RnfL(E) + (1 −Rn)fR(E). We write for the current

I = 2se
∑

n

{∫ ∞

0

dkx

2π
vx(kx)fL(E)

+

∫ 0

−∞

dkx

2π
vx(kx) [Rn(E)fL(E) + (1 −Rn(E))fR(E)]

}

(1.36)

= 2se
∑

n

∫ ∞

0

dkx

2π
vx(kx)(1 −Rn(E)) [fL(E) − fR(E)] .

To derive the last equation line, we have changed kx → −kx in the

second integral in Eq. (1.36). We use the unitarity relation (1.35) to

prove that

1− Rn =
∑

m

|tmn|2 = (t̂† t̂)nn.

Now we repeat the trick of the previous Section changing variables from

kx to E and arrive at the following expression,

I =
2se

2π

∫ ∞

0

dE Tr
[

t̂† t̂
]

[fL(E) − fR(E)] , (1.37)

where we have used the short-hand notation

Tr
[

t̂† t̂
]

=
∑

n

(

t̂†t̂
)

nn
.

Alternatively, the trace can be presented as a sum of eigenvalues Tp

of the Hermitian matrix t̂† t̂, transmission eigenvalues. Because of the

unitarity of the scattering matrix, Tp are real numbers between zero and

one.

The transmission eigenvalues depend on energy. However, in the linear

regime, when the applied voltage is much smaller that the typical energy

scale of this dependence, they can be evaluated at the Fermi surface, and

we obtain the expression for conductance,

G = GQ

∑

p

Tp(EF ). (1.38)
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Calculation of current in the right waveguide gives the same result: Cur-

rent is conserved.

Eq. (1.38) is known as the (two-terminal) Landauer formula.

We have derived this relation assuming that the nanostructure is con-

nected to ideal waveguides that support NL and NR transport channels.

Now we can get rid of this unrealistic assumption repeating the reason-

ing we have used for the QPC. Let us unfold the waveguides so that their

cross-sections become infinite: It should not change the transport prop-

erties of the nanostructure. The number of transport channels becomes

infinite, NL, NR → ∞. This means that there are infinitely many trans-

mission eigenvalues. This also means that the total number of transport

channels NL,R is an ”unphysical” quantity: It characterizes an auxiliary

model rather than the nanostructure, and no transport property of a

nanostructure would eventually depend on NL,R†.
How to reconcile the finite conductance given by Eq. (1.38) with the

infinite number of transmission eigenvalues? The implication is that

infinitely many transmission eigenvalues are concentrated very close to

zero transmission, so that they contribute neither to conductance nor to

any other transport property.

To evaluate the transmission eigenvalues of a given nanostructure, one

solves the Schrödinger equation in the scattering region and matches the

two asymptotics (1.31), (1.32), extracting the scattering matrix. The so-

lutions depend on all the details like location of gates and barriers and

the given configuration of the disorder. Even for relatively simple sys-

tems, this is a time-consuming task, without much intellectual impact:

A calculation for a given system does not give us an idea what the re-

sult would be if we add a gate or move a tunnel barrier. Moreover, the

calculation will give a different result for a different congiguration of

disorder.

This makes it important to comprehend the general properties of

transmission eigenvalues, those depending on the system design rather

than on the details.

One channel. Let us start with a simple example: a scatterer that can

transmit only one transport channel (for a given energy). All but one

transmission eigenvalues are zero. The structure is thus characterized

by a single transmission eigenvalue T . This is precisely the transmission

coefficient we have discussed for the tunnel barrier in Section 1.1; R = 1−

† Confusingly enough, this ”number of transport channels” is commonly used in
literature to characterize the area of the (narrowest) cross-section of a nanostruc-
ture.
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Fig. 1.15. One channel scatterer: notation, the transmission and reflection
amplitudes of the waves coming from the left and from the right.

T is the reflection coefficient. The scatering matrix is a 2×2 matrix and

contains more parameters, since in Eq. (1.34) r, r′, and t are complex

numbers, constrained by the conditions of unitarity (Fig. 1.15). There

are three independent parameters T , θ, and η,

ŝ =

(
√
Reiθ

√
Teiη

√
Teiη −

√
Rei(2η−θ)

)

. (1.39)

The phases θ and η do not manifest itself in the transport in a single

nanostructure of this type. As we show in Section ???, these phases are

relevant if we combine two structures producing quantum interference

effects.

For the ideal systems we considered previously — a rectangular poten-

tial barrier and a QPC — the scattering does not mix different transport

channels. An electron in the channel n can be either reflected back and

stay in the same channel, or be transmitted through the barrier and end

up in an identical channel at the other side. Therefore the matrix of

such an ideal system is block-diagonal — the matrices r, r′, t, and, im-

portantly, t†t are diagonal. Thus, the transmission eigenvalues for these

systems are just the transmission coefficients in the channels.

Distribution of transmission eigenvalues. The transmission eigenval-

ues Tp depend on disorder configuration and therefore are random (Fig.

1.16). We need a quantity that characterizes design of a nanostructure

rather than a concrete disorder configuration. This is provided by the

distribution function of transmission eigenvalues (transmission distribu-

tion) P (T ). Suppose we make an ensemble of nanostructures sharing

an identical design and differing in disorder configurations. Each nanos-

tructure provides a set of transmission eigenvalues. Let us concentate

on a narrow interval of transmissions from T to T + dT , count the num-

ber of transmission eigenvalues that fall into this interval, and divide

this by the total number of nanostructures. In the limit of a big ensem-
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ble, the result converges to P (T )dT . Mathematically, the transmission

distribution is thus defined as follows,

P (T ) =

〈

∑

p

δ (T − Tp(E))

〉

. (1.40)

The angular brackets in above relation mean the ensemble average, that

is, the average over all formally identical nanostructures in the ensemble.

The function P (T ) facilitates evaluating other averages. The average of

an arbitrary function of the transmission eigenvalues becomes
〈

∑

p

f(Tp)

〉

=

∫ 1

0

dT f(T )P (T ). (1.41)

In particular, one integrates TP (T ) to obtain the average conductance

〈G〉.

0 0.2 0.4 0.6 0.8 1
T

ρ(T)

Fig. 1.16. Transmission eigenvalues. We show the transmission eigenvalues
for three disorder realization of a diffusive conductor with nominal resistance
of 350Ω. The transmission distribution (thick solid line) is given by Eq. 1.43.

What is the use of the above relation? If the average conductance of

a nanostructure much exceeds the conductance quantum, 〈G〉 � GQ,

the transmission eigenvalues are dense, the typical spacing between the

eigenvalues being much less than one. This means that the sums over

transmission eigenvalues can be replaced by the integrals according to
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Eq. (1.41). The transport properties are thus self-averaged in this limit,

their fluctuations being much smaller than the average values. The

transport properties appear to be almost insensitive to a specific disor-

der configuration. The fluctuations of transport properties may become

significant if 〈G〉 ' GQ, and the transmission eigenvalues are sparse.

A fair part of this book either quantifies the transmission distribution

or makes use of it. In the rest of this Section, we provide examples of

P (T ) without quantifying it.

0 0.05 0.1 0.15
T

0.85 0.9
T

ρ(T)

Fig. 1.17. Examples of transmission distribution. Left: tunnel junction in
series with a diffusive conductor of a small resistance. Right: QPC with 20
open channels in series with a diffusive conductor.

Let us start with a QPC and consider energy at which a finite number

Nopen of transport channels are open (T = 1). An infinite number of

channels are closed (T = 0). The corresponding transmission distribu-

tion consists of two delta-functional peaks,

P (T ) = Nopenδ(1 − T ) + ∞ δ(T ).

Closed channels do not play any role in transport, and the part with the

open channels leads to the expression for the conductance, G = GQNopen

we have already seen. We will ignore the part proportional to δ(T ) and

write for a clean QPC

PQPC(T ) = Nopenδ(1 − T ). (1.42)
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The transmission eigenvalues in a clean QPC are highly degenerate. If

we add a small number of defects to the QPC, this degeneracy is lifted.

The scattering at the defects mixes the channels: An incident electron

in the open channel n which without scattering would pass the constric-

tion, can now be reflected to any channel n′, or be transmitted to an

arbitrary channel m. These processes modify the transmission matrix,

and, consequently, the transmission eigenvalues. If such channel mixing

is weak so that the probabilities to scatter from open channels are small,

we expect that all transmission eigenvalues remain close to 1. The role

of disorder is thus to lift the degeneracy (see Fig. 1.17). This regime

is realized when the contribution of disorder to the total conductance

of the system is sufficiently small, the resistance R due to defects being

much smaller than the resistance of the QPC. At further increase of re-

sistance R to values of the order of 1/GQPC the transmission eigenvalues

are spead over the whole interval 0 < T < 1.

A complementary example is a tunnel junction. Let us take a suf-

ficiently wide ideal potential barrier at an energy much below the top

energy of the barrier. All the transmission coefficients are guaranteed to

be small, T � 1. If the channels do not mix, the transmission eigenvalues

are just these coefficients and the transmission distribution concentrates

near T = 0. If we add some defects next to the barrier, the channels

mix. Some electrons after being reflected from the barrier are reflected

by defects back to the barrier. They just get the ”second chance” to

tunnel through. Because of this, some transmission eigenvalues grow

with increasing the defect resistance R. Similarly to QPC, the trans-

mission eigenvalues are spread over the whole interval 0 < T < 1 if R is

comparable with the resistance of the tunnel junction.

Let us add more defects. At some stage, the resistance due to the

defects dominate the total resistance. At this point, we can forget about

a QPC or a tunnel junction present in the structure. The electron that

traverses the scattering region experiences many scattering events at

the defects. Its motion is highly random. This corresponds to diffusion

provided the conductance of the structure still exceeds much the conduc-

tance quantum. The transmission distribution in a diffusive structure

appears to be universal — not depending of the details of the structure

design (Fig. 1.16),

ρ =
〈G〉
2GQ

1

T
√

1 − T
(1.43)

The integral of the transmission distribution over T gives the total num-
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ber of transport channels. This integral diverges for the bimodal distri-

bution (1.43) indicating an infinite number of channels that may take

part in diffusive transport.

Advanced Material

Q. The derivation of the Landauer formula you present is difficult to

generalize in order to treat the current fluctuations. Is there a different

formulation, more suitable for this purpose?

A. We treat current fluctuations (noise) in the next Section. Here we

present the operator formulation of the scattering approach and re-derive

the Landauer formula. We follow the derivation of Ref. [4].

An arbitrary wavefunction in the left waveguide is represented as a

sum of plane waves (1.31). These plain waves, however, do not form a

basis, since they only represent asymptotic expressions of wavefunctions,

which have complicated form in the scattering region and do not have to

be orthogonal. What does form a basis is a set of scattering states — the

states which originate from the reservoirs as plane waves and then are

partially transmitted through the barrier and partially reflected back.

The scattering state originated from the left reservoir has the form

ψLn(xL, yL, zL) =
1

√

2πh̄vn(E)
Φn(yL, zL)eik(n)

x xL (1.44)

+
∑

n′

1
√

2πh̄vn′(E)
rn′n(E)Φn′(yL, zL)e−ik(n′)

x xL ,

in the left waveguide, and

ψLn(xR, yR, zR) =
∑

m

1
√

2πh̄vm(E)
tmn(E)Φm(yR, zR)e−ik(m)

x xR

(1.45)

in the right waveguide. Analogously, there are scattering states ψRm

originating from the right reservoir. All these states are orthogonal and

complete and thus form a basis.

For each of these states, we can introduce creation and annihilation

operators. Let us introduce the creation operators â†Ln(E) and â†Rm

which create electrons in the scattering states with the energy E, origi-

nating from the left reservoir in the transport channel n, and from the

right reservoir in the transport channel m, respectively. The conju-

gated operators âLn(E) and âRm annihilate particles in the same states.

The operators â†, â refer to a basis and therefore are sufficient for the

quantum-mechanical description of the system.
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However, for convenience we introduce another set of operators. The

operator b̂†Ln(E) creates an electron with the energy E in the transport

channel n in the left waveguide moving to the left. A similar creation

operator for right-movers in the right waveguide is b̂†Rm(E), and the

annihilation operators are b̂Ln(E) and b̂Rm(E). These operators are

linarly related to the set â via the scattering matrix,

b̂αl(E) =
∑

β=L,R

∑

l′

sαl,βl′(E)âβl′(E); (1.46)

b̂†αl(E) =
∑

β=L,R

∑

l′

sβl′,αl(E)â†βl′(E), α = L,R, l = n,m.

Since electrons are fermions, the operators â obey anticommutation

relations,

â†αl(E)âβl′(E
′) + âβl′(E

′)â†αl(E) = δαβδll′δ(E −E′);

âαl(E)âβl′(E
′) + âβl′(E

′)âαl(E) = 0;

â†αl(E)â†βl′(E
′) + â†βl′(E

′)â†αl(E) = 0. (1.47)

The relations (1.47) take place since the scattering states form a ba-

sis. In the same way, the states describing left-moving electrons in the

left waveguide and right-moving electrons in the right waveguide, also

form a basis, and similar relations hold between the operators b̂ and b̂†.

However, the operators â and b̂ do not obey such relations, as evident

from Eq. (1.46).

Now we consider the quantum-mechanical averages of the products of

creation and annihilation operators. Since the right-moving particles in

the left waveguide originate from the left reservoir, and we have
〈

â†αl(E)âβl′(E
′)
〉

= δαβδll′δ(E −E′)fα(E), α = L,R. (1.48)

The average product of two creation or two annihilation operators is

always zero.

Let us proceed by writing down the field operators Ψ̂(r, t) and Ψ̂†(r, t),

which annihilate and create the electron at a given point and time mo-

ment. In the left waveguide, we have

Ψ̂(r, t) =

∫

dEe−iEth̄
∑

n

Φn(yL, zL)
√

2πh̄vn(E)

[

âLne
ik(n)

x xL + b̂Lne
−ik(n)

x xL

]

;

Ψ̂†(r, t) =

∫

dEeiEth̄
∑

n

Φ∗
n(yL, zL)

√

2πh̄vn(E)

[

â†Lne
−ik(n)

x xL + b̂†Lne
ik(n)

x xL

]

.

The basic course of quantum mechanics teaches us that if we know the
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wavefunction of the system, we can write down the expression for the

current density. Now, the formulae for the field operators enables us to

write the operator of current in the left waveguide,

Î(xL, t) =
h̄e

2im

∫

dyLdzL

[

Ψ̂† ∂

∂xL
Ψ̂ −

(

∂

∂xL
Ψ̂†

)

Ψ̂

]

. (1.49)

To calculate the average current, we only need to know the time-averaged

current operator. To avoid dealing with ill-defined delta-functions, we

perform the following trick. Imagine that all the quantities are periodic

in time with the period T → ∞. The allowed values of energy are then

foun from the condition that the exponents of the type exp(iEt) are

also periodic, hence E = 2πqh̄/T with an integer q. Consequently, we

replace
∫

dE by 2πh̄/T ∑n. Using

〈

ei(E−E′)t
〉

t
= δqq′ ,

where the angular brackets here denote the time-average. This means

that in the expression for the current (1.49) both field operators must

be evaluated at the same energy. We obtain

〈

Î
〉

t
=
GQ

e

(

2πh̄

T

)2
∑

n

∑

E

[

â†Ln(E)âLn(E) − b̂†Ln(E)b̂Ln(E)
]

.

(1.50)

Eq. (1.50) has an easy interpretation: The current in the left waveguide

is the number of particles moving to the right (represented by â†â) mi-

nus the number of particles moving to the left (b̂†b̂), summed over all

channels and energies.

Eliminating b̂ in favour of â, we write

〈

Î
〉

t
=

GQ

e

(

2πh̄

T

)2
∑

n

∑

αβ,ll′

∑

E

â†αl(E)âβl′(E)

×
[

δαLδβLδnlδnl′ − s∗αl,Ln(E)sLn,βl′(E)
]

. (1.51)

The last step is to perform the quantum-mechanical average of Eq.

(1.51) and to find the average current. At first glance, this makes no

sense, since according to Eq. (1.48) the average of the product of two

operators take at the same energy is infinite. However, for the dis-

cretized energies we have to replace the delta-function by the Kronecker

delta-symbol,

δ(E −E′) → T
2πh̄

δqq′ .
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This cancels one factor of T . Now we can take the limit T → ∞ and

from the discrete sum come back to the integral over energies. Taking

into account that the averaging procedure yields α = β, l = l′, and using

the unitarity condition (1.35), we safely arrive to the Landauer formula

Eq. (1.37).

Q. Smth about the relation between scattering matrices and Green’s

functions.

A.

Q. Smth about recursive Green’s functions?

A.


