|
|
Line 39: |
Line 39: |
| * LDOS using Green functions: | | * LDOS using Green functions: |
|
| |
|
| <math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r | \mathbf{r} \rangle </math> | | <math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> |
|
| |
|
| ==Nonequilibrium== | | ==Nonequilibrium== |
Revision as of 15:28, 27 September 2012
Equilibrium
Expectation values
Density matrix of fermions in equilibrium
- using spectral decomposition:
- Fermi-Dirac distribution function:
![{\displaystyle f(E)=1/[\exp((E-\mu )/k_{B}T)+1]}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/0042e1bba268303b9a4fbfc477c1b5adcea8be6f)
- Hamiltonian and its spectral decomposition:

- function of Hamiltonian:

- Green operators:
![{\displaystyle {\hat {G}}^{r,a}=[E{\hat {I}}-{\hat {H}}\pm i\eta ]^{-1}}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/1add4a1aa7c6e27d3f59c18aa2fe7305790206d9)
Charge density
- charge density operator:

- expectation value:
(in some discrete representation these is just diagonal matrix element)
Density of states
- definition of total DOS:
(with possible normalization factors like
)
- definition of LDOS:

- LDOS using wavefunctions:
![{\displaystyle n(\mathbf {r} )=\mathrm {Tr} [{\hat {\rho }}_{\mathrm {eq} }|\mathbf {r} \rangle \langle \mathbf {r} |]=\sum _{\alpha }|\Psi _{\alpha }(\mathbf {r} )|^{2}f(E_{\alpha })=\int dE\left[\sum _{\alpha }|\Psi _{\alpha }(\mathbf {r} )|^{2}\delta (E-E_{\alpha })\right]f(E)=\int dE\,g(\mathbf {r} ,E)f(E)}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/2936de2e77327f4089b9e316053c48f293a681b0)
- LDOS using Green functions:
Nonequilibrium