Key equations from quantum statistical tools: Difference between revisions
From phys824
Jump to navigationJump to search
| (One intermediate revision by the same user not shown) | |||
| Line 44: | Line 44: | ||
<math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> | <math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> | ||
* total DOS using Green functions: | |||
<math> g(E) = -\frac{1}{\pi} \mathrm{Tr}[ \hat{G}^r(E)] = -\frac{1}{\pi} \int d^3 \mathbf{r} \, \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> | |||
==Nonequilibrium== | ==Nonequilibrium== | ||
===Expectation values=== | |||
<math> A = \mathrm{Tr}[\hat{\rho}_\mathrm{neq} \hat{A}] </math> | |||
*Current | *Current operators: | ||
Latest revision as of 14:32, 27 September 2012
Equilibrium
Expectation values
Density matrix of fermions in equilibrium
- using spectral decomposition:
- using Green functions:
- Fermi-Dirac distribution function:
- Hamiltonian and its spectral decomposition:
- function of Hamiltonian:
- Green operators:
Charge density
- charge density operator:
- expectation value: (in some discrete representation these is just diagonal matrix element)
Density of states
- definition of total DOS: (with possible normalization factors like )
- definition of LDOS:
- LDOS using wavefunctions:
- LDOS using Green functions:
- total DOS using Green functions:
Nonequilibrium
Expectation values
- Current operators: