References: Difference between revisions

From phys824
Jump to navigationJump to search
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Quantum Mechanics ==
== Quantum Mechanics ==
* C. Cohen-Tannoudji, B. Diu, and F. Laloe: ''Quantum Mechanics'', 2 Volume Set (Wiley, Hoboken, 2006). [http://www.wiley.com/WileyCDA/WileyTitle/productCd-047116433X.html [Publisher Website]]
* C. Cohen-Tannoudji, B. Diu, and F. Laloe: ''Quantum Mechanics'', 2 Volume Set (Wiley, Hoboken, 2006).


== Statistical Mechanics ==
== Statistical Mechanics ==
*
*M. Kardar, ''Statistical Physics of Particles'' (Cambridge University Press, Cambridge, 2007).


==Solid State Physics==
==Solid State Physics==
*G. Grosso and G. Pastori Parravicini, ''Solid State Physics'' (Academic Press, San Diego, 2013).
*G. Grosso and G. Pastori Parravicini, ''Solid State Physics'' (Academic Press, San Diego, 2013).
*E. Canadell, M.-L. Doublet, and C. Iung, ''Orbital Approach to the Electronic Structure of Solids'' (Oxford University Press, Oxford, 2012).
*E. Canadell, M.-L. Doublet, and C. Iung, ''Orbital Approach to the Electronic Structure of Solids'' (Oxford University Press, Oxford, 2012).
== Transport in semiconductor nanostructures ==
* C. W. J. Beenakker and H. van Houten, ''Quantum transport in semiconductor nanostructures'', arXiv:cond-mat/0412664 [http://arxiv.org/pdf/cond-mat/0412664v1 [PDF]]
* H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, ''Coulomb-blockade oscillations in semiconductor nanostructures'', arXiv:cond-mat/0508454 [http://arxiv.org/pdf/cond-mat/0508454v1 [PDF]]
* I. Knezevic, E. B. Ramayya, D. Vasileska, and S. M. Goodnick, ''Diffusive transport in quasi-2D and quasi-1D electron systems'', Journal of Computational and Theoretical Nanoscience '''6''', 1725 (2009). [http://homepages.cae.wisc.edu/~knezevic/Knezevic_Quasi2D_quasi1D.pdf [PDF]]


== Spintronics ==
== Spintronics ==
Line 26: Line 21:
* M. Z. Hasan, C. L. Kane, ''COLLOQUIUM: Topological insulators'', Rev.Mod.Phys. '''82''',3045 (2010). [http://dx.doi.org/10.1103/RevModPhys.82.3045 [PDF]]
* M. Z. Hasan, C. L. Kane, ''COLLOQUIUM: Topological insulators'', Rev.Mod.Phys. '''82''',3045 (2010). [http://dx.doi.org/10.1103/RevModPhys.82.3045 [PDF]]


== Advanced NEGF Computational Algorithms==
== Advanced NEGF computational algorithms==


=== Self-energies of semi-infinite electrodes ===
=== Self-energies of semi-infinite electrodes ===
Line 56: Line 51:


* [[Media:Qttg_mahfouzi.pdf | QTTG block-tridiagonalization algorithms]]
* [[Media:Qttg_mahfouzi.pdf | QTTG block-tridiagonalization algorithms]]
== Advanced NEGF Theory ==
=== NEGF Fundamentals ===
* R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.-O. Almbladh and U. von Barth, ''Introduction to the Keldysh Formalism'', Lect. Notes Phys. '''706''', 33 (2006). [http://theochem.chem.rug.nl/research/vanleeuwen/literature/keldysh.pdf [PDF]]
* R. van Leeuwen and N. E. Dahlen, ''An introduction to nonequilibrium Green functions'' [http://theochem.chem.rug.nl/research/vanleeuwen/literature/NGF.pdf [PDF]]
* G. Baym, ''Conservation laws and the quantum transport theory: The early days'' [[Media: BAYM=conservation_laws_and_quantum_theory_of_transport_early_days.pdf |[PDF]]]
* A. Oguri, ''Transport theory for interacting electrons connected to reservoirs'', cond-mat/0606316 [http://www.physics.udel.edu/~bnikolic/QTTG/shared/reviews/transport_theory_for_interacting_electrons_connected_to_reservoirs_oguri.pdf [PDF]]
* A.-P. Jauho, ''Modeling of inelastic effects in molecular electronics'', in Progress in NEGF III [[Media:REVIEW-JAUHO=modeling_of_inelastic_effects_in_molecular_electronics.pdf |[PDF]]]


=== NEGF + DFT ===
=== NEGF + DFT ===
* D. A. Areshkin and B. K. Nikolic, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms'', Phys. Rev. B '''81''', 155450 (2010). [http://www.physics.udel.edu/~bnikolic/PDF/negf_dft_gnr.pdf [PDF]].  
* D. A. Areshkin and B. K. Nikolic, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms'', Phys. Rev. B '''81''', 155450 (2010). [http://www.physics.udel.edu/~bnikolic/PDF/negf_dft_gnr.pdf [PDF]].  
* A. Rocha, ''Theoretical and Computational Aspects of Electronic Transport at the Nanoscale'' (PhD thesis for SMEAGOL).  [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/SMEAGOL=rocha_phd_thesis.pdf [PDF]]
* A. Rocha, ''Theoretical and Computational Aspects of Electronic Transport at the Nanoscale'' (PhD thesis for SMEAGOL).  [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/SMEAGOL=rocha_phd_thesis.pdf [PDF]]
* M. Koentopp, ''Density Functional Calculations of Nanoscale Conductance'' (PhD thesis). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/KONTOPP=theory_of_electronic_transport_through_molecular_nanostructures.pdf [PDF]]
* M. Koentopp, ''Density Functional Calculations of Nanoscale Conductance'' (PhD thesis). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/KONTOPP=theory_of_electronic_transport_through_molecular_nanostructures.pdf [PDF]]
 
* S Kurth and G Stefanucci, Transport through correlated systems with density functional theory, J. Phys.: Condens. Matter {\bf 29}, 413002 (2017). [https://iopscience.iop.org/article/10.1088/1361-648X/aa7e36/pdf [PDF]]
* M. Koentopp, C. Chang, K. Burke, and R. Car, ''Density functional calculations of nanoscale conductance'', J. Phys.: Condens. Matter '''20''', 083203 (2008) (topical review). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/REVIEW_BURKE=density_functional_calculatins_of_nanoscale_conductance.pdf [PDF]]
 
=== NEGF + GW ===
 
* K. S. Thygesen and A. Rubio, ''Correlated electron transport in molecular junctions'', Chapter 23 in Volume I of The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Eds. A. V. Narlikar and Y. Y. Fu (Oxford University Press, Oxford, 2010). [[Media:corr_transport_new.pdf|[PDF]]]
 
* C. D. Spataru, M. S. Hybertsen, S. G. Louie, and A. J. Millis, ''GW approach to Anderson model out of equilibrium: Coulomb blockade and false hysteresis in the I-V characteristics'', Phys. Rev. B '''79''', 155110 (2009). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+GW/MILLIS=gw_approach_to_anderson_model_out_of_equilibrium_coulomb_blockade_and_false_hysteresis_in_iv_characteristics.pdf [PDF]]
 
* X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis, ''Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model'', Phys. Rev. B '''77''', 045119 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+GW/MILLIS=electronic_correlation_in_nanoscale_junctions_comparison_GW_approximation_to_numerically_exact_solution_to_single_anderson_model.pdf [PDF]]
 
=== NEGF + DMFT ===
 
* S. Okamoto, ''Nonlinear transport through strongly correlated two-terminal heterostructures: A dynamical mean-field approach'', Phys. Rev. Lett. '''101''', 116807 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/OKAMOTO=nonlinear_transport_through_strongly_correlated_two_terminal_heterostructures_a_dynamical_mean_field_approach.pdf [PDF]]
 
* S. Okamoto, ''Nonequilibrium transport and optical properties of model metal–Mott-insulator–metal heterostructures'', Phys. Rev. B '''76''', 035105 (2007) [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/OKAMOTO=nonequilibrium_transport_and_optical_properties_of_model_metal-mott-insulator-metal_heterostructures.pdf [PDF]]
 
* A. Ishida and A. Liebsch, ''Embedding approach for dynamical mean-field theory of strongly correlated heterostructures'', Phys. Rev. B '''79''', 045130 (2009). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/ISHIDA=embedding_approach_for_dmft_of_strongly_correlated_heterostructures.pdf [PDF]]
 
* D. Jacob, K. Haule, and G. Kotliar, ''Kondo effect and conductance of nanocontacts with magnetic impurities'', Phys. Rev. Lett. '''103''', 016803 (2009). [http://link.aps.org/doi/10.1103/PhysRevLett.103.016803 [PDF]]

Latest revision as of 16:13, 2 September 2020

Quantum Mechanics

  • C. Cohen-Tannoudji, B. Diu, and F. Laloe: Quantum Mechanics, 2 Volume Set (Wiley, Hoboken, 2006).

Statistical Mechanics

  • M. Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007).

Solid State Physics

  • G. Grosso and G. Pastori Parravicini, Solid State Physics (Academic Press, San Diego, 2013).
  • E. Canadell, M.-L. Doublet, and C. Iung, Orbital Approach to the Electronic Structure of Solids (Oxford University Press, Oxford, 2012).

Spintronics

Semiconductor spintronics

  • J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, Semiconductor Spintronics, Acta Physica Slovaca 57, 565 (2007) [PDF].
  • B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [PDF]

Metal spintronics

  • D. C. Ralph and M. A. Stiles, Tutorial on spin transfer torque, Journal of Magnetism and Magnetic Materials 320, 1190 (2008). [PDF] (the arXiv version linked here is corrected and contains additional material compared to officially published JMMM article).

Topological Insulators

  • M. Z. Hasan, C. L. Kane, COLLOQUIUM: Topological insulators, Rev.Mod.Phys. 82,3045 (2010). [PDF]

Advanced NEGF computational algorithms

Self-energies of semi-infinite electrodes

  • J. Velev and W. Butler, On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis, J. Phys.: Condens. Matter 16, R637 (2004). [PDF]
  • H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, Krylov subspace method for evaluating the self-energy matrices in electron transport calculations, Phys. Rev. B 77, 155301 (2008). [PDF]
  • I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78, 035407 (2008). [PDF]

k-point sampling

  • M.-H. Liu and K. Richter, Efficient quantum transport simulation for bulk graphene heterojunctions, Phys. Rev. B 86, 115455 (2012). [PDF].

Recursive algorithms

Two-terminal devices

  • D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
  • A. Lassl, P. Schlagheck, and K. Richter, Effects of short-range interactions on transport through quantum point contacts: A numerical approach, Phys. Rev. B 75, 045346 (2007). [PDF]
  • P. S. Drouvelis, P. Schmelcher, and P. Bastian, Parallel implementation of the recursive Green’s function method, J. Comp. Phys. 215, 741 (2006). [PDF]

Multiterminal devices

  • M. Wimmer and K. Richter, Optimal block-tridiagonalization of matrices for coherent charge transport, J. Comp. Phys. 228, 8548 (2009). [PDF]
  • K. Kazymyrenko and X. Waintal, Knitting algorithm for calculating Green functions in quantum systems, Phys. Rev. B 77, 115119 (2008). [PDF]

NEGF + DFT

  • D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
  • A. Rocha, Theoretical and Computational Aspects of Electronic Transport at the Nanoscale (PhD thesis for SMEAGOL). [PDF]
  • M. Koentopp, Density Functional Calculations of Nanoscale Conductance (PhD thesis). [PDF]
  • S Kurth and G Stefanucci, Transport through correlated systems with density functional theory, J. Phys.: Condens. Matter {\bf 29}, 413002 (2017). [PDF]